skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy

Abstract

Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs entered from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding themore » plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.« less

Authors:
; ; ;  [1]
  1. Hackensack University Medical Center, Hackensack, NJ (United States)
Publication Date:
OSTI Identifier:
22649118
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; BRACHYTHERAPY; IRRADIATION; MAMMARY GLANDS; PATIENTS; PLANNING; RADIATION DOSES; RECOMMENDATIONS; SKIN

Citation Formats

Beninati, G, Barbiere, J, Godfrey, L, and Ndlovu, A. SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4956722.
Beninati, G, Barbiere, J, Godfrey, L, & Ndlovu, A. SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy. United States. doi:10.1118/1.4956722.
Beninati, G, Barbiere, J, Godfrey, L, and Ndlovu, A. 2016. "SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy". United States. doi:10.1118/1.4956722.
@article{osti_22649118,
title = {SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy},
author = {Beninati, G and Barbiere, J and Godfrey, L and Ndlovu, A},
abstractNote = {Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs entered from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.},
doi = {10.1118/1.4956722},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less
  • Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of watermore » container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine target volume, and is a promising image-guidance tool for prone APBI.« less
  • Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for {>=}4 years, 20 for {>=}3.5 years, 29 for >3.0 years,more » 33 for {>=}2.5 years, and 46 for {>=}2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at {>=} 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at {>=}3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic ({>=}6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI.« less
  • Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50-60 Gy in 25-30 fractions within 5-6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in amore » Asterisk-Operator (reddish) and reduction in L Asterisk-Operator (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6-12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b Asterisk-Operator values, and EBRT did not, demonstrating that the reduction in b Asterisk-Operator values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.« less
  • Purpose: To report the feasibility, toxicity, cosmesis, and efficacy of using intensity-modulated radiation therapy (IMRT) with respiratory gating to deliver accelerated partial breast irradiation (APBI) in selected Stage I/II breast cancer after breast-conserving surgery. Methods and Materials: Eligible patients with node-negative Stage I/II breast cancer were prospectively enrolled in an institutional review board approved protocol to receive APBI using IMRT after breast-conserving surgery. The target volume was treated at 3.8 Gy/fraction twice daily for 5 days, to a total dose of 38 Gy. Results: Thirty-six patients were enrolled for a median follow-up time of 44.8 months. The median tumor sizemore » was 0.98 cm (range, 0.08-3 cm). The median clinical target volume (CTV) treated was 71.4 cc (range, 19-231 cc), with the mean dose to the CTV being 38.96 Gy. Acute toxicities included Grade 1 erythema in 44% of patients and Grade 2 in 6%, Grade 1 hyperpigmentation in 31% of patients and Grade 2 in 3%, and Grade 1 breast/chest wall tenderness in 14% of patients. No Grade 3/4 acute toxicities were observed. Grade 1 and 2 late toxicities as edema, fibrosis, and residual hyperpigmentation occurred in 14% and 11% of patients, respectively; Grade 3 telangiectasis was observed in 3% of patients. The overall cosmetic outcome was considered 'excellent' or 'good' by 94% of patients and 97% when rated by the physician, respectively. The local control rate was 97%; 1 patient died of a non-cancer-related cause. Conclusions: APBI can be safely and effectively administered using IMRT. In retrospective analysis, IMRT enabled the achievement of normal tissue dose constraints as outlined by Radiation Therapy Oncology Group 04-13/NSABP B-13 while providing excellent conformality for the CTV. Local control and cosmesis have remained excellent at current follow-up, with acceptable rates of acute/late toxicities. Our data suggest that cosmesis is dependent on target volume size. Further prospective multi-institutional trials should be performed to evaluate IMRT to deliver APBI.« less