skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-531: Determination of Site-Specific Dynamic-Jaw Versus Static-Jaw RapidArc Delivery

Abstract

Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weighted by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission ofmore » 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less

Authors:
 [1];  [2];  [3]
  1. Community Hospital, Munster, IN (United States)
  2. Franciscan St Margaret Health, Hammond, IN (United States)
  3. University of Miami, Miami, FL (United States)
Publication Date:
OSTI Identifier:
22649115
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; APERTURES; BEAMS; BLADDER; DELIVERY; PATIENTS; PROSTATE; RADIOTHERAPY; RECTUM

Citation Formats

Tien, C, Brewer, M, and Studenski, M. SU-F-T-531: Determination of Site-Specific Dynamic-Jaw Versus Static-Jaw RapidArc Delivery. United States: N. p., 2016. Web. doi:10.1118/1.4956716.
Tien, C, Brewer, M, & Studenski, M. SU-F-T-531: Determination of Site-Specific Dynamic-Jaw Versus Static-Jaw RapidArc Delivery. United States. doi:10.1118/1.4956716.
Tien, C, Brewer, M, and Studenski, M. 2016. "SU-F-T-531: Determination of Site-Specific Dynamic-Jaw Versus Static-Jaw RapidArc Delivery". United States. doi:10.1118/1.4956716.
@article{osti_22649115,
title = {SU-F-T-531: Determination of Site-Specific Dynamic-Jaw Versus Static-Jaw RapidArc Delivery},
author = {Tien, C and Brewer, M and Studenski, M},
abstractNote = {Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weighted by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.},
doi = {10.1118/1.4956716},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 Multiplication-Sign 27 matrix with an active area of 27 Multiplication-Sign 27 cm{sup 2} was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, whenmore » measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within {+-}1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments.« less
  • The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45more » Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc was selected as the optimal solution. Individualized collimator angle solutions should be considered by RapidArc dosimetrists for OARs dose reduction. RapidArc should be considered as a treatment modality for tumors that extensively involve in the skull, dura, or scalp.« less
  • In photosynthetic reaction centers, a quinone molecule, Q[sub B], is the terminal acceptor in light-induced electron transfer. The protonatable residues Glu-L212 and Asp-L213 have been implicated in the binding of Q[sub B] and in proton transfer to Q[sub B] anions generated by electron transfer from the primary quinone Q[sub A]. Here the authors report the details of the construction of the Ala-L212/Ala-L213 double mutant strain by site-specific mutagenesis and show that its photosynthetic incompetence is due to an inability to deliver protons to the Q[sub B] anions. They also report the isolation and biophysical characterization of a collection of revertantmore » and suppressor strains that have regained the photosynthetic phenotype. The compensatory mutations that restore function are diverse and show that neither Glu-L212 nor Asp-L213 is essential for efficient light-induced electron or proton transfer in Rhodobacter capsulatus. 42 refs., 3 figs., 1 tab.« less
  • Purpose: The Varian RapidArc is a system for intensity-modulated radiotherapy (IMRT) treatment planning and delivery. RapidArc incorporates capabilities such as variable dose-rate, variable gantry speed, and accurate and fast dynamic multileaf collimators (DMLC), to optimize dose conformality, delivery efficiency, accuracy and reliability. We developed RapidArc system commissioning and quality assurance (QA) procedures. Methods and Materials: Tests have been designed that evaluate RapidArc performance in a stepwise manner. First, the accuracy of DMLC position during gantry rotation is examined. Second, the ability to vary and control the dose-rate and gantry speed is evaluated. Third, the combined use of variable DMLC speedmore » and dose-rate is studied. Results: Adapting the picket fence test for RapidArc, we compared the patterns obtained with stationary gantry and in RapidArc mode, and showed that the effect of gantry rotation on leaf accuracy was minimal ({<=}0.2 mm). We then combine different dose-rates (111-600 MU/min), gantry speeds (5.5-4.3{sup o}/s), and gantry range ({delta}{theta} = 90-12.9 deg.) to give the same dose to seven parts of a film. When normalized to a corresponding open field (to account for flatness and asymmetry), the dose of the seven portions show good agreement, with a mean deviation of 0.7%. In assessing DMLC speed (0.46, 0.92, 1.84, and 2.76 cm/s) during RapidArc, the analysis of designed radiation pattern indicates good agreement, with a mean deviation of 0.4%. Conclusions: The results of these tests provide strong evidence that DMLC movement, variable dose-rates and gantry speeds can be precisely controlled during RapidArc.« less
  • Purpose: Volumetric modulated arc therapy (RapidArc; Varian Medical Systems, Palo Alto, CA) allows fast delivery of stereotactic radiotherapy for Stage I lung tumors. We investigated discrepancies between the calculated and delivered dose distributions, as well as the dosimetric impact of leaf interplay with breathing-induced tumor motion. Methods and Materials: In 20 consecutive patients with Stage I lung cancer who completed RapidArc delivery, 15 had tumor motion exceeding 5 mm on four-dimensional computed tomography scan. Static and dynamic measurements were performed with Gafchromic EBT film (International Specialty Products Inc., Wayne, NJ) in a Quasar motion phantom (Modus Medical Devices, London, Ontario,more » Canada). Static measurements were compared with calculated dose distributions, and dynamic measurements were compared with the convolution of static measurements with sinusoidal motion patterns. Besides clinical treatment plans, additional cases were optimized to create excessive multileaf collimator modulation and delivered on the phantom with peak-to-peak motions of up to 25 mm. {gamma} Analysis with a 3% dose difference and 2- or 1-mm distance to agreement was used to evaluate the accuracy of delivery and the dosimetric impact of the interplay effect. Results: In static mode film dosimetry of the two-arc delivery in the phantom showed that, on average, fewer than 3% of measurements had {gamma} greater than 1. Dynamic measurements of clinical plans showed a high degree of agreement with the convolutions: for double-arc plans, 99.5% met the {gamma} criterion. The degree of agreement was 98.5% for the plans with excessive multileaf collimator modulations and 25 mm of motion. Conclusions: Film dosimetry shows that RapidArc accurately delivers the calculated dose distribution and that interplay between leaves and tumor motion is not significant for single-fraction treatments when RapidArc is delivered with two different arcs.« less