skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc

Abstract

Purpose: For a give PTV dose, beam-on time is shorter in the FFF than the non-FFF mode because of higher MU/min. Larger tumors usually require more complex intensity modulation, which might affect plan quality and total MU. We investigated the relationship between PTV size and plan quality using FFF and non-FFF modes. Methods: Two different PTV volumes (PTV and PTV+1 cm margin) were drawn in brain, lung and liver. 3-full to 7-partial arc (Rapidarc) of 6 MV, 1400 MU/min were studied. Plan quality was evaluated by: (a) DVH for PTV and normal tissues, (b) total MU and beam-on time, and (c) passing rate for IMRT plan QA. Results: For the same PTV coverage, DVH for normal tissue was the same or slightly lower in the FFF compared with non-FFF. Total MU was 13% higher in FFF than non-FFF in the 3-arc, 7 Gy treatment, but the difference became smaller when arc number increased to 6–7 for 10–24 Gy. Larger PTV did not affect the difference in the total MU. FFF required a short beam-on time and the ratio of FFF and non-FFF was 0.34 to 0.88 for 7- and 3-arc, respectively. For larger PTV, the ratio increased to 0.45–0.90. Ratiomore » of total MU for large PTV was 3–8% lower in the non-FFF plans. Although the small difference in MU, beam-on time was 1.1 to-1.6 times longer in the 3- and 7-arc non-FFF plans. Plan verification showed the similar gamma index passing rate. Conclusion: While total MU was similar with FFF and non-FFF modes, the beam-on time was shorter in the FFF treatment. The advantage of FFF was greater in treatments with high dose per fraction using more arc numbers. For dose less than 10 Gy, using FFF and non-FFF modes, tumor size did not affect the relationship of total MU, beam-on time.« less

Authors:
 [1]
  1. Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China)
Publication Date:
OSTI Identifier:
22649112
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; BEAMS; BRAIN; COMPARATIVE EVALUATIONS; DOSES; INDEXES; LIVER; LUNGS; MODULATION; NEOPLASMS; RADIOTHERAPY; VERIFICATION

Citation Formats

Chen, F. SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc. United States: N. p., 2016. Web. doi:10.1118/1.4956713.
Chen, F. SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc. United States. doi:10.1118/1.4956713.
Chen, F. 2016. "SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc". United States. doi:10.1118/1.4956713.
@article{osti_22649112,
title = {SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc},
author = {Chen, F},
abstractNote = {Purpose: For a give PTV dose, beam-on time is shorter in the FFF than the non-FFF mode because of higher MU/min. Larger tumors usually require more complex intensity modulation, which might affect plan quality and total MU. We investigated the relationship between PTV size and plan quality using FFF and non-FFF modes. Methods: Two different PTV volumes (PTV and PTV+1 cm margin) were drawn in brain, lung and liver. 3-full to 7-partial arc (Rapidarc) of 6 MV, 1400 MU/min were studied. Plan quality was evaluated by: (a) DVH for PTV and normal tissues, (b) total MU and beam-on time, and (c) passing rate for IMRT plan QA. Results: For the same PTV coverage, DVH for normal tissue was the same or slightly lower in the FFF compared with non-FFF. Total MU was 13% higher in FFF than non-FFF in the 3-arc, 7 Gy treatment, but the difference became smaller when arc number increased to 6–7 for 10–24 Gy. Larger PTV did not affect the difference in the total MU. FFF required a short beam-on time and the ratio of FFF and non-FFF was 0.34 to 0.88 for 7- and 3-arc, respectively. For larger PTV, the ratio increased to 0.45–0.90. Ratio of total MU for large PTV was 3–8% lower in the non-FFF plans. Although the small difference in MU, beam-on time was 1.1 to-1.6 times longer in the 3- and 7-arc non-FFF plans. Plan verification showed the similar gamma index passing rate. Conclusion: While total MU was similar with FFF and non-FFF modes, the beam-on time was shorter in the FFF treatment. The advantage of FFF was greater in treatments with high dose per fraction using more arc numbers. For dose less than 10 Gy, using FFF and non-FFF modes, tumor size did not affect the relationship of total MU, beam-on time.},
doi = {10.1118/1.4956713},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Studies have suggested that function may vary throughout the lung, and that patients who have tumors located in the base of the lung are more susceptible to radiation pneumonitis. The purpose of our study was to investigate the relationship between gross tumor volume (GTV) location and pneumonitis rates using a large clinical database of 547 patients with non-small-cell lung cancer. Methods and Materials: The GTV centroids of all patients were mapped onto one common coordinate system, in which the boundaries of the coordinate system were defined by the extreme points of each individual patient lung. The data were qualitativelymore » analyzed by graphing all centroids and displaying the data according to the presence of severe pneumonitis, tumor stage, and smoking status. The centroids were grouped according to superior-inferior segments, and the pneumonitis rates were analyzed. In addition, we incorporated the GTV centroid information into a Lyman-Kutcher-Burman normal tissue complication probability model and tested whether adding spatial information significantly improved the fit of the model. Results: Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. The pneumonitis incidence rates were 16%, 23%, and 21% for the superior, middle, and inferior thirds of the lung, respectively. Qualitatively, the GTV centroids of nonsmokers were notably absent from the superior portion of the lung. In addition, the GTV centroids of patients who had Stage III and IV clinical staging were concentrated toward the medial edge of the lung. The comparison between the GTV centroid model and the conventional dose-volume model did not yield a statistically significant difference in model fit. Conclusions: Lower pneumonitis rates were noted for the superior portion of the lung; however the differences were not statistically significant. For our patient cohort, incorporating GTV centroid information did not lead to a statistically significant improvement in the fit of the pneumonitis model.« less
  • The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standardsmore » were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose measurements using the semiflex ionization chamber with intermediate volume (0.125 cm{sup 3}) shows good agreement with the TPS calculated among the detectors used in this study. Positioning is very important when using smaller volume chambers because they are more sensitive to geometrical errors within the treatment fields. It is also suggested to average the dose over the sensitive volume for larger-volume chambers. The ionization chamber-phantom combinations used in this study can be used interchangeably for routine RapidArc patient-specific quality assurance with a satisfactory accuracy for clinical practice.« less
  • Nickel and palladium complexes of the type (M(L{sub 2}){sub 2})(BF{sub 4}){sub 2} and (M(L{sub 2})(L{sub 2}{prime}))(BF{sub 4}){sub 2} (where L{sub 2} and L{sub 2}{prime} are diphosphine ligands) have been synthesized. The lowest energy electronic absorption band for the nickel complexes decreases in energy as the bite size of the diphosphine ligand increases. Similarly, the half-wave potentials for the Ni(II/I) and Pd(II/O) couples become more positive as the bite size increases. Structural studies of (Ni(dppm){sub 2})(BF{sub 4}){sub 2} (where dppm is bis(diphenylphosphino)methane) and (Ni-(dppb){sub 2})(PF{sub 6}){sub 2} (where dppb is 1,2-bis(diphenylphosphino)benzene) show that increasing the bite size of the diphosphine ligandsmore » results in larger tetrahedral distortions. The crystal structure of (Ni(Dppm){sub 2})(BF{sub 4}){sub 2}(C{sub 50}H{sub 44}B{sub 2}F{sub 8}NiP{sub 4}) and (Ni(Dppb){sub 2})(PF{sub 6}){sub 2}(C{sub 74}H{sub 64}F{sub 12}NiP{sub 6}) were measured and are reported herein. Calculations made using the extended Huckel theory indicate that the observed distortions may have an electronic as well as a steric component. The calculations also allow rationalization of the electronic absorption spectra, electrochemical data, and the stability of the Ni(I) and Pd(I) complexes (Ni(dppp){sub 2})(BF{sub 4}) (where dppp is 1,3-bis(diphenylphosphino)propane) and (Pd(dppx){sub 2})(BF{sub 4}) (where dppx is {alpha},{alpha}{prime}-bis(diphenylphosphino)-o-xylene). Complexes containing the ligand dppm have a marked tendency to become five-coordinate, as indicated by the structural determination of (Ni(dppm){sub 2}(CH{sub 3}CN))(PF{sub 6}){sub 2}. The crystal structure for the latter complex is reported.« less