skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study

Abstract

Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4-based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scored included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion:more » Cerenkov emissions in water are 1.6x greater for 18MV than 6MV for the same integral dose. Future work will expand the analysis to include optical properties of tissues, and to investigate strategies to maximize Cerenkov emission per unit dose for MV radiotherapy.« less

Authors:
; ;  [1]
  1. Duke University Medical Center, Durham, NC (United States)
Publication Date:
OSTI Identifier:
22649094
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; 62 RADIOLOGY AND NUCLEAR MEDICINE; COMPUTERIZED SIMULATION; EMISSION; EMISSIVITY; INTEGRAL DOSES; LINEAR ACCELERATORS; MONTE CARLO METHOD; PARTICLE TRACKS; PHOTON BEAMS; PRODUCTIVITY; RADIOTHERAPY

Citation Formats

Shrock, Z, Oldham, M, and Adamson, J. SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study. United States: N. p., 2016. Web. doi:10.1118/1.4956692.
Shrock, Z, Oldham, M, & Adamson, J. SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study. United States. doi:10.1118/1.4956692.
Shrock, Z, Oldham, M, and Adamson, J. Wed . "SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study". United States. doi:10.1118/1.4956692.
@article{osti_22649094,
title = {SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study},
author = {Shrock, Z and Oldham, M and Adamson, J},
abstractNote = {Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4-based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scored included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion: Cerenkov emissions in water are 1.6x greater for 18MV than 6MV for the same integral dose. Future work will expand the analysis to include optical properties of tissues, and to investigate strategies to maximize Cerenkov emission per unit dose for MV radiotherapy.},
doi = {10.1118/1.4956692},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiation-induced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » In each case the volume was placed at the maximum dose depth (1.5cm for 6MV source and 0.5cm for {sup 60}Co). In addition, {sup 18}F, {sup 192}Ir and {sup 60}Co were simulated using Geant4 radioactive decay models as internal sources. Dose deposition and CR production spectra in 200nm-400nm range were calculated as it is the excitation range of titania. 2) Using 6MV external source, the absorption by titania was calculated via the track length of CR in the spherical volume. The nanoparticle concentration was varied from 0.25 to 5µg/g. Results: Among different radioactive sources, results showed that {sup 18}F induced the highest amount of CR per disintegration, but {sup 60}Co had the highest yield per unit dose. When compared with external sources, 6MV source was shown to be the most efficient for the the same delivered dose. Simulations indicated increased absorption for increasing concentrations, with up to 68% absorption of generated CR for 5µg/g titania concentration. Conclusion: The results demonstrate that 6MV beam is favored with a higher CR yield, compared to radionuclides, and that the use of higher concentrations of titania may increase photosensitization. From the findings, we propose that if sufficiently potent concentrations of titania are delivered to tumors this could substantially boost EBRT.« less
  • Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeledmore » and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.« less
  • Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less
  • Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less
  • Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI)more » treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as {sup 187}W, {sup 56}Mn, {sup 24}Na and {sup 28}Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws.« less