SUFT507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study
Abstract
Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scored included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion:more »
 Authors:
 Duke University Medical Center, Durham, NC (United States)
 Publication Date:
 OSTI Identifier:
 22649094
 Resource Type:
 Journal Article
 Resource Relation:
 Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; 62 RADIOLOGY AND NUCLEAR MEDICINE; COMPUTERIZED SIMULATION; EMISSION; EMISSIVITY; INTEGRAL DOSES; LINEAR ACCELERATORS; MONTE CARLO METHOD; PARTICLE TRACKS; PHOTON BEAMS; PRODUCTIVITY; RADIOTHERAPY
Citation Formats
Shrock, Z, Oldham, M, and Adamson, J. SUFT507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study. United States: N. p., 2016.
Web. doi:10.1118/1.4956692.
Shrock, Z, Oldham, M, & Adamson, J. SUFT507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study. United States. doi:10.1118/1.4956692.
Shrock, Z, Oldham, M, and Adamson, J. 2016.
"SUFT507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study". United States.
doi:10.1118/1.4956692.
@article{osti_22649094,
title = {SUFT507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study},
author = {Shrock, Z and Oldham, M and Adamson, J},
abstractNote = {Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scored included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion: Cerenkov emissions in water are 1.6x greater for 18MV than 6MV for the same integral dose. Future work will expand the analysis to include optical properties of tissues, and to investigate strategies to maximize Cerenkov emission per unit dose for MV radiotherapy.},
doi = {10.1118/1.4956692},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}

Purpose: To compare dosimetric characteristics of 6 MV photon fields originating from a linear accelerator operating with (FF) and without (FFF) a flatteningfilter. The main objective is to establish a FFF model that results in similar depthdose and buildup profiles as the original FF model, and subsequently estimate and compare outoffield dose distributions. Methods: The EGSnrc Monte Carlo user codes BEAMnrc and DOSXYZnrc are used for photon beam simulations of an Elekta linear accelerator and dose calculations in a water phantom, respectively. Three beam models were analyzed: (1) the conventional linear accelerator with the flatteningfilter in place and incident electronmore »

SUFT663: Cerenkov Radiation Enhanced Radiotherapy with Titanium Dioxide Nanoparticle: A Monte Carlo Study
Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiationinduced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » 
Estimation of the focal spot size and shape for a medical linear accelerator by Monte Carlo simulation
The focal spot size and shape of a medical linac are important parameters that determine the dose profiles, especially in the penumbral region. A relationship between the focal spot size and the dose profile penumbra has been studied and established from simulation results of the EGSnrc Monte Carlo code. A simple method is proposed to estimate the size and the shape of a linac's focal spot from the measured dose profile data. 
Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations
Purpose: The scope of this study was to determine a complete set of correction factors for several detectors in static small photon fields for two linear accelerators (linacs) and for several detectors. Methods: Measurements for Monte Carlo (MC) commissioning were performed for two linacs, Siemens Primus and Elekta Synergy. After having determined the source parameters that best fit the measurements of field specific output factors, profiles, and tissuephantom ratio, the generalized version of the classical beam quality correction factor for static small fields, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}},more » 
SUET405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators
Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore »