skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments

Abstract

Purpose: The integration of couch motion during arc delivery is necessitated to enable irradiation trajectories such as coronal arcs, and to enhance the geometrical sampling for dynamic deliveries to the highest extent. To enable such capability, a platform of Trajectory Modulated Arc Therapy (TMAT) is developed in conjunction with standardized noncollisional dynamic path-set for irradiation of intracranial lesions. Methods: A generalized path-set was constructed through the combination of sagittal arcs (45 degrees from the CAX), axial arcs, and coronal arcs produced through modulation of the dynamic rotation of couch. The standardized path was implemented in a contiguous manner enabling the formation of fully automated sub-trajectories to provide maximal geometrical convergence with minimal number of arcs. Progressive sampling technique is used for direct aperture optimization of the MLCs and the selection of couch positions across the control points. Dosimetry of the resulting plans was assessed relative to clinically delivered plans. Using the TrueBeam Developer Mode, plan deliverability was tested. Results: Treatment planning of TMAT sub-trajectories for central, anterior and posterior tumor sites with volumes ranging from 4.75cc to 107cc demonstrated radically reduced doses to the critical OARs when compared to the clinically treated VMAT. Specifically, percentage reduction in mean dose formore » critical organs such as brainstem, cochlea, and optic nerve are found to be as low as 74±15%, 50±26% and 74±30% respectively as compared to VMAT. Conformity Index, defined as the ratio of tumor volume (VPTV) and 100% dose volume (V(D100%)), was reduced up to 12% while the Gradient Index, defined as V(D100%)/V(D50%), was concurrently improved by up to 14%. Conclusion: An automated standardized trajectory with dynamically modulated couch-gantry arcs has been developed for intracranial radiotherapy. Through the incorporation of coronal arcs, it is demonstrated that significantly reduced OAR doses can be achieved relative to clinically treated patient plans via VMAT. Research Grant Funding Support by Varian Medical Systems.« less

Authors:
; ; ; ;  [1];  [2]
  1. Stanford University, Stanford, CA (United States)
  2. University of British Columbia, Victoria (Canada)
Publication Date:
OSTI Identifier:
22649090
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; CRITICAL ORGANS; DEVELOPERS; PLANNING; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Khan, S, Chin, E, Xing, L, Hristov, D, Fahimian, B, and Otto, K. SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments. United States: N. p., 2016. Web. doi:10.1118/1.4956688.
Khan, S, Chin, E, Xing, L, Hristov, D, Fahimian, B, & Otto, K. SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments. United States. doi:10.1118/1.4956688.
Khan, S, Chin, E, Xing, L, Hristov, D, Fahimian, B, and Otto, K. 2016. "SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments". United States. doi:10.1118/1.4956688.
@article{osti_22649090,
title = {SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments},
author = {Khan, S and Chin, E and Xing, L and Hristov, D and Fahimian, B and Otto, K},
abstractNote = {Purpose: The integration of couch motion during arc delivery is necessitated to enable irradiation trajectories such as coronal arcs, and to enhance the geometrical sampling for dynamic deliveries to the highest extent. To enable such capability, a platform of Trajectory Modulated Arc Therapy (TMAT) is developed in conjunction with standardized noncollisional dynamic path-set for irradiation of intracranial lesions. Methods: A generalized path-set was constructed through the combination of sagittal arcs (45 degrees from the CAX), axial arcs, and coronal arcs produced through modulation of the dynamic rotation of couch. The standardized path was implemented in a contiguous manner enabling the formation of fully automated sub-trajectories to provide maximal geometrical convergence with minimal number of arcs. Progressive sampling technique is used for direct aperture optimization of the MLCs and the selection of couch positions across the control points. Dosimetry of the resulting plans was assessed relative to clinically delivered plans. Using the TrueBeam Developer Mode, plan deliverability was tested. Results: Treatment planning of TMAT sub-trajectories for central, anterior and posterior tumor sites with volumes ranging from 4.75cc to 107cc demonstrated radically reduced doses to the critical OARs when compared to the clinically treated VMAT. Specifically, percentage reduction in mean dose for critical organs such as brainstem, cochlea, and optic nerve are found to be as low as 74±15%, 50±26% and 74±30% respectively as compared to VMAT. Conformity Index, defined as the ratio of tumor volume (VPTV) and 100% dose volume (V(D100%)), was reduced up to 12% while the Gradient Index, defined as V(D100%)/V(D50%), was concurrently improved by up to 14%. Conclusion: An automated standardized trajectory with dynamically modulated couch-gantry arcs has been developed for intracranial radiotherapy. Through the incorporation of coronal arcs, it is demonstrated that significantly reduced OAR doses can be achieved relative to clinically treated patient plans via VMAT. Research Grant Funding Support by Varian Medical Systems.},
doi = {10.1118/1.4956688},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives andmore » constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.« less
  • Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated atmore » 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment techniques such as TLI and CSI is readily achievable through the developed platform. Grant Funding by Varian Medical Systems.« less
  • Purpose: To assess the potential benefit of trajectory modulated arc therapy (TMAT) for treatments of small benign intracranial tumor, pituitary adenoma. Methods: A TMAT planning platform that incorporates complex source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement was used for the study. The platform couples an interactive trajectory generation tool with a VMAT algorithm that performs multi-resolution, progressive sampling MLC optimization on a user-designed trajectory. A continuous couch rotation of 160° angular span with ±20° mini gantry arcs was used to emulate a non-coplanar horizontal arc-like trajectory. Compared to conventional non-coplanar gantry arcs (60°-100° gantrymore » rotation with couch kicks), TMAT limited the unnecessary low to medium dose spread in the anterior and posterior directions, where primary OARs (e.g., brainstem, optic chiasm, optic nerves, and lens) are in close proximity to the targeted pituitary tumor volume. For 5 standard fractionation pituitary adenoma cases (50.4Gy/28fractions), TMAT and non-coplanar VMAT plans were generated and compared under equivalent objectives/constraints. TMAT delivery was implemented and demonstrated on Varian TrueBeam via XML scripts. Results: Both techniques showed good target coverage while OARs were able to meet the constraints on QUANTEC guidelines. Notably, TMAT decreased the dose deposition in the anterior-to-posterior direction surrounding PTV. TMAT significantly reduced the mean doses on brainstem, optic nerves, eyes and lens by 47.29%±13.17%, 28.51%±8.68%, 80.82%±8.71% and 65.38%±19.99% compared with VMAT, all p≤0.01. Percentage reductions of maximum point dose in eyes and lens were 75.68%±10.30% and 70.72%±18.62% respectively for TMAT versus VMAT, all p≤0.01. A representative isocentric TMAT pituitary plan was delivered via an XML script with 200 control points and 282 MUs. Conclusion: Deliverable TMAT plans were achieved in developer mode in TrueBeam. TMAT was shown to be superior for pituitary adenoma irradiation in terms of OARs sparing.« less
  • Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space,more » indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view of target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.« less
  • Purpose: A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. Methods: The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible formore » TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. Results: TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180– 210 control points at 1°–2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. Conclusion: The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters correlated with toxicity and cosmetic outcome of APBI. This project was supported by Varian Research Grant.« less