skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI

Abstract

Purpose: The DEFGEL dosimeter/phantom allows for the measurement of 3D dose distributions while maintaining tissue equivalence and deformability. Although DEFGEL is traditionally read out with optical CT, the use of MRI would permit the measurement of 3D dose distributions in optically interfering configurations, like while embedded in a phantom. To the knowledge of the authors, this work is the first investigation that uses MRI to measure dose distributions in DEFGEL dosimeters. Methods: The DEFGEL (6%T) formula was used to create 1 cm thick, 4.5 cm diameter cylindrical dosimeters. The dosimeters were irradiated using a Varian Clinac 21EX linac. The MRI based transverse relaxation rate (R2) of the gel was measured in a central slice of the dosimeter with a Spin-Echo (SE) pulse sequence on a 3T GE SIGNA PET/MR scanner. The R2 values were fit to a monoexponential dose response equation using in-house software (MATLAB). Results: The data was well fit using a monoexponential fit for R2 as a function of absorbed dose (R{sup 2} = 0.9997). The fitting parameters of the monoexponential fit resulted in a 0.1229 Gy{sub −1}s{sub −1} slope. The data also resulted in an average standard deviation of 1.8% for the R2 values within the evaluatedmore » ROI. Conclusion: The close fit for the dose response curve shows that a DEFGEL based dosimeter can be paired with a SE MRI acquisition. The Type A uncertainty of the MRI method shows adequate precision, while the slope of the fit curve is large enough that R2 differences between different gel doses are distinguishable. These results suggest that the gel could potentially be used in configurations where an optical readout is not viable, such as measurements with the gel dosimeter positioned inside larger or optically opaque phantoms. This work is partially funded by NIH grant R01CA190298.« less

Authors:
; ; ;  [1];  [2]
  1. Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)
  2. GE Healthcare, Waukesha, WI (United States)
Publication Date:
OSTI Identifier:
22649067
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; ABSORBED RADIATION DOSES; COMPUTER CODES; DOSEMETERS; GELS; LINEAR ACCELERATORS; NMR IMAGING; PHANTOMS; POSITRON COMPUTED TOMOGRAPHY; RADIATION DOSE DISTRIBUTIONS; READOUT SYSTEMS

Citation Formats

Matrosic, C, McMillan, A, Bednarz, B, Culberson, W, and Holmes, J. SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI. United States: N. p., 2016. Web. doi:10.1118/1.4956662.
Matrosic, C, McMillan, A, Bednarz, B, Culberson, W, & Holmes, J. SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI. United States. doi:10.1118/1.4956662.
Matrosic, C, McMillan, A, Bednarz, B, Culberson, W, and Holmes, J. 2016. "SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI". United States. doi:10.1118/1.4956662.
@article{osti_22649067,
title = {SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI},
author = {Matrosic, C and McMillan, A and Bednarz, B and Culberson, W and Holmes, J},
abstractNote = {Purpose: The DEFGEL dosimeter/phantom allows for the measurement of 3D dose distributions while maintaining tissue equivalence and deformability. Although DEFGEL is traditionally read out with optical CT, the use of MRI would permit the measurement of 3D dose distributions in optically interfering configurations, like while embedded in a phantom. To the knowledge of the authors, this work is the first investigation that uses MRI to measure dose distributions in DEFGEL dosimeters. Methods: The DEFGEL (6%T) formula was used to create 1 cm thick, 4.5 cm diameter cylindrical dosimeters. The dosimeters were irradiated using a Varian Clinac 21EX linac. The MRI based transverse relaxation rate (R2) of the gel was measured in a central slice of the dosimeter with a Spin-Echo (SE) pulse sequence on a 3T GE SIGNA PET/MR scanner. The R2 values were fit to a monoexponential dose response equation using in-house software (MATLAB). Results: The data was well fit using a monoexponential fit for R2 as a function of absorbed dose (R{sup 2} = 0.9997). The fitting parameters of the monoexponential fit resulted in a 0.1229 Gy{sub −1}s{sub −1} slope. The data also resulted in an average standard deviation of 1.8% for the R2 values within the evaluated ROI. Conclusion: The close fit for the dose response curve shows that a DEFGEL based dosimeter can be paired with a SE MRI acquisition. The Type A uncertainty of the MRI method shows adequate precision, while the slope of the fit curve is large enough that R2 differences between different gel doses are distinguishable. These results suggest that the gel could potentially be used in configurations where an optical readout is not viable, such as measurements with the gel dosimeter positioned inside larger or optically opaque phantoms. This work is partially funded by NIH grant R01CA190298.},
doi = {10.1118/1.4956662},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose To characterize the Cyberknife (CK) robotic system’s dosimetric accuracy of the delivery of MultiPlan’s Monte Carlo dose calculations using EBT3 radiochromic film inserted in a thorax phantom. Methods The CIRS XSight Lung Tracking (XLT) Phantom (model 10823) was used in this study with custom cut EBT3 film inserted in the horizontal (coronal) plane inside the lung tissue equivalent phantom. CK MultiPlan v3.5.3 with Monte Carlo dose calculation algorithm (1.5 mm grid size, 2% statistical uncertainty) was used to calculate a clinical plan for a 25-mm lung tumor lesion, as contoured by the physician, and then imported onto the XLTmore » phantom CT. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0– 800 cGy. The test films (n=3) were irradiated using 325 cGy to the prescription point. Films were scanned 48 hours after irradiation using an Epson v700 scanner (48 bits color scan, extracted red channel only, 96 dpi). Percent absolute dose and relative isodose distribution difference relative to the planned dose were quantified using an in-house QA software program. Multiplan Monte Carlo dose calculation was validated using RCF dosimetry (EBT3) and gamma index criteria of 3%/3mm and 2%/2mm for absolute dose and relative isodose distribution measurement comparisons. Results EBT3 film measurements of the patient plans calculated with Monte Carlo in MultiPlan resulted in an absolute dose passing rate of 99.6±0.4% for the Gamma Index of 3%/3mm, 10% dose threshold, and 95.6±4.4% for 2%/2mm, 10% threshold criteria. The measured central axis absolute dose was within 1.2% (329.0±2.5 cGy) of the Monte Carlo planned dose (325.0±6.5 cGy) for that same point. Conclusion MultiPlan’s Monte Carlo dose calculation was validated using the EBT3 film absolute dosimetry for delivery in a heterogeneous thorax phantom.« less
  • No abstract prepared.
  • In this study the Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in the containment of a pressurized water reactor by comparing the results from the UD-802 with remmeter readings. The Panasonic UD-802 dosimeter is used routinely as a beta and gamma dosimeter but due to the natural Li and B in the thermoluminescent materials, it is also sensitive to neutrons. Since a dosimeter's response to neutrons is energy-dependent, proper calibration of the UD-802 in the environment for which it is to be used was an important consideration of the study. To calibrate the system, UD-802more » dosimeters were mounted on polyethylene phantoms and irradiated to reference doses at selected locations in containment. The reference doses were determined based on remmeter dose-rate measurements and stay times. The thermoluminescent response of the dosimeters and the reference measurements were used to obtain a response ratio at each location. The average response ratio (unit of dosimeter response per millirem) was 3.7 and all response ratios were within +/-30% of this mean value. Specific characteristics of the UD-802 were also investigated, that is, the effects that dosimeter distance from the phantom and a person's movement through containment have on response. The dosimeter distance from the phantom was found to have a minimal effect on response, but the system was found to be dependent upon the angle of the phantom relative to the reactor core, necessitating a correction in the calibration factor. The overall conclusion of this study was that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in containment of a pressurized water reactor.« less
  • A postal dose intercomparison of /sup 60/Co dosimetry at the radiotherapy level was carried out in the Secondary Standard Dosimetry Laboratory (SSDL) Network using LiF. The deviations between the dose quoted by the 22 Secondary Standard Dosimetry Laboratories taking part and that measured by the International Atomic Energy Agency's dosimetry laboratory were all less than 5% and in 16 cases were less than +- 2%, the estimated uncertainty in the method.