skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field

Abstract

Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until an engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dosemore » was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.« less

Authors:
; ; ;  [1];  [2]
  1. Washington University School of Medicine, St. Louis, MO (United States)
  2. ViewRay, Inc, Oakwood Village, OH (United States)
Publication Date:
OSTI Identifier:
22649062
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COBALT 60; COMPUTERIZED SIMULATION; IONIZATION CHAMBERS; MAGNETIC FIELDS; MONTE CARLO METHOD; RADIATION DOSES; VALIDATION

Citation Formats

Green, O, Li, H, Goddu, S, Mutic, S, and Kawrakow, I. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field. United States: N. p., 2016. Web. doi:10.1118/1.4956657.
Green, O, Li, H, Goddu, S, Mutic, S, & Kawrakow, I. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field. United States. doi:10.1118/1.4956657.
Green, O, Li, H, Goddu, S, Mutic, S, and Kawrakow, I. 2016. "SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field". United States. doi:10.1118/1.4956657.
@article{osti_22649062,
title = {SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field},
author = {Green, O and Li, H and Goddu, S and Mutic, S and Kawrakow, I},
abstractNote = {Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until an engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dose was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.},
doi = {10.1118/1.4956657},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • A magnetometer using the principle of nuclear resonance absorption is described. The instrument was constructed in 1951 and was used on the 1.5 m cyclotron. Measurements were carried out in the range 11 to 12 kilogauss. The instrument is very small in size (30 mm in diameter and 1200 mm long) and could therefore be introduced in the form of a probe into the accelerating chamber ef the cyclotron. The accuracy ef the method can be of the order of 10/sup -4/ %; the accuracy actually used was 10/sup -1/%. (TCO)
  • Purpose: The aim of this work was to measure the influences of the Lorentz force (electron return effect) on secondary electron transport in the presence of a low magnetic field produced in a commercial MR-IGRT system using a custom heterogeneous phantom. Methods: A commercial MR-IGRT system has been commissioned in our department. The system combines real-time imaging using a split-bore 0.35-T MRI and three Co-60 heads, each collimated with a doubly-focused MLC. The integrated treatment planning system uses a Monte-Carlo algorithm that models the magnetic field effects on scattered electrons. During commissioning, a custom heterogeneity phantom was designed to acquiremore » ionization chamber and film measurements. The 30 cm cubic phantom consists of two waterfilled annuli, each containing a central region that simulates a 6 cm cubic lung tumor using polystyrene embedded in cork. Film may be placed inbetween the halves, and small-volume ionization chambers may be placed in different positions to measure dose to the tumor and near interfaces where the electron return effect is expected. The treatment planning system was used to create open-field and IMRT treatment plans on a CT scan of the phantom. Plans were delivered to the phantom, and radiographic film and ionization chamber measurements were obtained. Results: The mean ionization chamber measured dose ratio for 27 measurements for 5 plans was 0.993 ± 0.027. Lateral profile film measurements confirm that the electron-return-effect is observable, producing local dose variations of less than 10% over 5 mm with 0.35 T magnetic field for single field treatment plans. The effect becomes negligible for opposing-field and IMRT treatments. Conclusion: A heterogeneous phantom for measurement of the electron-return-effect has been designed. Ionization chamber and film measurements made with the phantom indicate that the dosimetric effect is minimal, and the treatment planning system predicts dose reasonably well for complex heterogeneous scenarios.« less
  • Purpose: To characterize magnetic field effects on Optically Stimulated Luminescence Detectors (OSLDs) for use as an in-vivo dosimeter in an MRIGRT machine. Methods: Landauer OSLD nano-dots and the MicroStar II reader were used to measure and record OSLDs exposed in and on a solid water phantom in a 10.5 × 10.5 cm{sup 2} field, Co-60, 0.32-Tesla MR-IGRT machine - with and without the presence of the magnetic field. Two orthogonal gantry angles were considered to assess orientation effects on the OSLDs with respect to the incident angle of the radiation beam and magnetic field. The same OSLDs were then usedmore » (after readout and bleaching) when the magnetic field was restored. Results: The measured surface dose decreased by 14.1 ± 1.8% when magnetic field was ’on’ due to contamination electrons being swept away by the field. Doses at both 0.5 cm and 5 cm depth increased by 6.5 ± 0.9% and 8.8 ± 0.5% respectively when the magnetic field was present and the OSLDs oriented with their long axis parallel with the incident beam. This contrasts with an increased dose of 2.7 ± 1.1% when the magnetic field was present and the OSLDs were oriented with their long axis perpendicular to the incident beam. Conclusion: Previous works have shown that OSLDs have a dependence on beam incidence angle. Our current work suggests an additional dependence on the presence of the magnetic field when the beam is not perpendicular to the plane of the detector and this effect needs to be considered. Furthermore, the use of an in-vivo dosimeter was shown to have no effect on image quality during the use of MR guidance. Future work will focus on the use of an electromagnet with a linear accelerator to further characterize these effects.« less
  • Patients treated using a magnetic-resonance image guided radiation therapy (MR-IGRT) system received both CT and MR simulations. During planning, the CT is used to determine relative electron density (RED) using a calibration table. This study aims to investigate the feasibility of MR-only treatments by comparing CT-computed dose distributions to those computed with combinations of water (1.0), lung (0.26), tissue (1.02), and bone (1.12) bulk RED overrides, and to identify the effects of the magnetic field on the RED-overridden doses. Methods: Four patients who received treatment using a commercial MR-IGRT system were analyzed (1 lung, 2 abdomen, and 1 pelvis). Themore » clinical plans were computed using the first fraction MRI as primary, and the simulation CT as secondary for REDs. Plans were reoptimized using default bulk RED overrides (water/lung and tissue/lung for the lung patient, water/bone, tissue/bone, water only, and tissue only for the abdomen and pelvis patients). Additionally, each plan was re-optimized to include the static magnetic field. All plans were normalized to the same PTV coverage as the clinical plan. Dose-difference volumes and DVHs were computed for bulk density override plans, and 3D gamma analyses between each plan and its accompanying magnetic field plan were performed using 3%/3 mm dose difference and distance-to-agreement criteria using the PTV and Skin as masking structures. Results: The average differences in PTV and organs-at-risk mean dose for all RED combinations tested were −0.19 Gy (−0.62 – 0.06 Gy) and −0.34 Gy (−1.76 – 0.33 Gy), respectively. The average PTV and Skin gamma pass rates for all RED combinations tested were 99.88% (99.5% – 100%) and 98. 35% (96.3% – 99.6%). No systematic differences in DVHs or isodoses were observed. Conclusions: It is likely that that a commercial MR-IGRT system may produce high quality treatment plans without the need for CT scans. Authors of this abstract are members of the Washington University Radiation Oncology department, which has a research agreement with ViewRay, Inc.« less
  • Purpose: The Mevion S250 proton therapy unit is equipped with a 6D-robotic couch and IGRT system (Verity). The patient alignment process allows corrections in six degrees of freedom: translation (x,y,z), pitch, roll, and yaw (θ,ϑ,ψ). Geometric accuracy of couch corrections and imaging vs. radiation isocenter coincidence were quantified before clinical implementation. Methods: A commercial phantom with sixteen 2mm tungsten BBs was rigidly couch-mounted and imaged with CT. Seventeen rigid translations/rotations of known magnitude were digitally applied to the original CT image using commercial software, validated with Varian OBI system. For each altered image, phantom was mounted on robotic couch inmore » original position, then Verity 2D:2D match (PA-LLAT) was performed using DRRs from altered images. Corrections were recorded and applied, phantom was imaged a second time and residual corrections recorded. Physical measurements verified that applied couch corrections coincided with both physical couch shifts/rotations and known CT image translations/rotations. Additionally, image vs. radiation isocenter coicidence was quantified over couch treatment angles (±90° from setup position) using radiochromic film and an image-guided couch star-shot. Posterior-anterior and left-lateral kV radiographs were taken before each beam was delivered to verify imaging/radiation isocentricity. Results: Verity suggested couch corrections and known CT shifts/rotations agreed within ±1mm (average: Δ lat=0.5mm; Δ vert=0.4mm; Δ long=0.3mm) and ± 0.4° (average: Δ pitch=0.24° Δ roll=0.01°; Δ yaw=0.10°). Physical couch measurements and Verity applied corrections agreed within ± 1mm (average: Δlat=0.5mm; Δvert=0.4mm; Δlong=0.2mm) and ±0.2° (average: Δpitch=0.03°; Δ roll=0.04°; Δ yaw=0.04°). The directionality of all translations and rotations were qualitatively verified. The image vs. radiation isocenter coincidence was <1mm and radiation-isocenter precision was <1mm over the 180° of couch motion, as indicated by film analysis. Conclusion: The Verity IGRT software and 6D-couch combination on the Mevion S250 was verified as accurate within 1mm and 0.5°. This complies with the TG-142 standards for a stereotactic radiotherapy IGRT system. Rob Cessac is employed as Product Manager for Mevion Medical Systems.« less