skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-463: Light-Field Based Dynalog Verification

Abstract

Purpose: To independently verify leaf positions in so-called dynalog files for a Varian iX linac with a Millennium 120 MLC. This verification provides a measure of confidence that the files can be used directly as part of a more extensive intensity modulated radiation therapy / volumetric modulated arc therapy QA program. Methods: Initial testing used white paper placed at the collimator plane and a standard hand-held digital camera to image the light and shadow of a static MLC field through the paper. Known markings on the paper allow for image calibration. Noise reduction was attempted with removal of ‘inherent noise’ from an open-field light image through the paper, but the method was found to be inconsequential. This is likely because the environment could not be controlled to the precision required for the sort of reproducible characterization of the quantum noise needed in order to meaningfully characterize and account for it. A multi-scale iterative edge detection algorithm was used for localizing the leaf ends. These were compared with the planned locations from the treatment console. Results: With a very basic setup, the image of the central bank A leaves 15–45, which are arguably the most important for beam modulation, differed frommore » the planned location by [0.38±0.28] mm. Similarly, for bank B leaves 15–45 had a difference of [0.42±0.28] mm Conclusion: It should be possible to determine leaf position accurately with not much more than a modern hand-held camera and some software. This means we can have a periodic and independent verification of the dynalog file information. This is indicated by the precision already achieved using a basic setup and analysis methodology. Currently, work is being done to reduce imaging and setup errors, which will bring the leaf position error down further, and allow meaningful analysis over the full range of leaves.« less

Authors:
;  [1]
  1. BC Cancer Agency, Abbotsford, BC (Canada)
Publication Date:
OSTI Identifier:
22649054
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMMERCIAL BUILDINGS; COMPUTER CODES; IMAGES; ITERATIVE METHODS; LEAVES; LINEAR ACCELERATORS; NOISE; RADIOTHERAPY; VERIFICATION; VISIBLE RADIATION

Citation Formats

Atwal, P, and Ramaseshan, R. SU-F-T-463: Light-Field Based Dynalog Verification. United States: N. p., 2016. Web. doi:10.1118/1.4956648.
Atwal, P, & Ramaseshan, R. SU-F-T-463: Light-Field Based Dynalog Verification. United States. doi:10.1118/1.4956648.
Atwal, P, and Ramaseshan, R. 2016. "SU-F-T-463: Light-Field Based Dynalog Verification". United States. doi:10.1118/1.4956648.
@article{osti_22649054,
title = {SU-F-T-463: Light-Field Based Dynalog Verification},
author = {Atwal, P and Ramaseshan, R},
abstractNote = {Purpose: To independently verify leaf positions in so-called dynalog files for a Varian iX linac with a Millennium 120 MLC. This verification provides a measure of confidence that the files can be used directly as part of a more extensive intensity modulated radiation therapy / volumetric modulated arc therapy QA program. Methods: Initial testing used white paper placed at the collimator plane and a standard hand-held digital camera to image the light and shadow of a static MLC field through the paper. Known markings on the paper allow for image calibration. Noise reduction was attempted with removal of ‘inherent noise’ from an open-field light image through the paper, but the method was found to be inconsequential. This is likely because the environment could not be controlled to the precision required for the sort of reproducible characterization of the quantum noise needed in order to meaningfully characterize and account for it. A multi-scale iterative edge detection algorithm was used for localizing the leaf ends. These were compared with the planned locations from the treatment console. Results: With a very basic setup, the image of the central bank A leaves 15–45, which are arguably the most important for beam modulation, differed from the planned location by [0.38±0.28] mm. Similarly, for bank B leaves 15–45 had a difference of [0.42±0.28] mm Conclusion: It should be possible to determine leaf position accurately with not much more than a modern hand-held camera and some software. This means we can have a periodic and independent verification of the dynalog file information. This is indicated by the precision already achieved using a basic setup and analysis methodology. Currently, work is being done to reduce imaging and setup errors, which will bring the leaf position error down further, and allow meaningful analysis over the full range of leaves.},
doi = {10.1118/1.4956648},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: A robust quality assurance (QA) program for computer controlled enhanced dynamic wedge (EDW) has been designed and tested. Calculations to perform such QA test is based upon the EDW dynamic log files generated during dose delivery. Methods: Varian record and verify system generates dynamic log (dynalog) files during dynamic dose delivery. The system generated dynalog files contain information such as date and time of treatment, energy, monitor units, wedge orientation, and type of treatment. It also contains the expected calculated segmented treatment tables (STT) and the actual delivered STT for the treatment delivery as a verification record. These filesmore » can be used to assess the integrity and precision of the treatment plan delivery. The plans were delivered with a 6 MV beam from a Varian linear accelerator. For available EDW angles (10°, 15°, 20°, 25°, 30°, 45°, and 60°) Varian STT values were used to manually calculate monitor units for each segment. It can also be used to calculate the EDW factors. Independent verification of fractional MUs per segment was performed against those generated from dynalog files. The EDW factors used to calculate MUs in TPS were dosimetrically verified in solid water phantom with semiflex chamber on central axis. Results: EDW factors were generated from the STT provided by Varian and verified against practical measurements. The measurements were in agreement of the order of 1 % to the calculated EDW data. Variation between the MUs per segment obtained from dynalog files and those manually calculated was found to be less than 2%. Conclusion: An efficient and easy tool to perform routine QA procedure of EDW is suggested. The method can be easily implemented in any institution without a need for expensive QA equipment. An error of the order of ≥2% can be easily detected.« less
  • Purpose: Using Linac dynamic logs (Dynalogs) we evaluate the impact of a single failing MLC motor on the deliverability of an IMRT plan by assessing the recalculated dose volume histograms (DVHs) taking the delivered MLC positions and beam hold-offs into consideration. Methods: This is a retrospective study based on a deteriorating MLC motor (leaf 36B) which was observed to be failing via Dynalog analysis. To investigate further, Eclipse-importable MLC files were generated from Dynalogs to recalculate the actual delivered dose and to assess the clinical impact through DVHs. All deliveries were performed on a Varian 21EX linear accelerator equipped withmore » Millennium-120 MLC. The analysis of Dynalog files and subsequent conversion to Eclipse-importable MLC files were all performed by in-house programming in Python. Effects on plan DVH are presented in the following section on a particular brain-IMRT plan which was delivered with a failing MLC motor which was then replaced. Results: Global max dose increased by 13.5%, max dose to the brainstem PRV increased by 8.2%, max dose to the optic chiasm increased by 7.6%, max dose to optic nerve increased by 8.8% and the mean dose to the PTV increased by 7.9% when comparing the original plan to the fraction with the failing MLC motor. The reason the dose increased was due to the failure being on the B-bank which is the lagging side on a sliding window delivery, therefore any failures on this side will cause an over-irradiation as the B-bank leaves struggles to keep the window from growing. Conclusion: Our findings suggest that a single failing MLC motor may jeopardize the entire delivery. This may be due to the bad MLC motor drawing too much current causing all MLCs on the same bank to underperform. This hypothesis will be investigated in a future study.« less
  • Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study. Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used asmore » the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software. Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.« less
  • Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less