skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer

Abstract

Purpose: To investigate the dose volume histogram (DVH) prediction varieties based on intensity modulate radiotherapy (IMRT) plan or volume arc modulate radiotherapy (VMAT) plan models on the RapidPlan. Methods: Two DVH prediction models were generated in this study, including an IMRT model trained from 83 IMRT rectum plans and a VMAT model trained from 60 VMAT rectum plans. In the internal validation, 20 plans from each training database were selected to verify the clinical feasibility of the model. Then, 10 IMRT plans (PIMRT-by-IMRT-model) generated from IMRT model and 10 IMRT plans generated from VMAT model (PIMRT-by-VMAT-model) were compared on the dose to organs at risk (OAR), which included bladder, left and right femoral heads. The similar comparison was also performed on the VMAT plans generated from IMRT model (PVMAT-by-IMRT-model) and VMAT plans generated from VMAT (PVMAT-by-VMAT-model) model. Results: For the internal validation, all plans from IMRT or VMAT model shows significantly improvement on OAR sparing compared with the corresponded clinical ones. Compared to the PIMRT-by-VMAT-model, the PIMRT-by-IMRT-model has a reduction of 6.90±3.87%(p<0.001) on V40 6.63±3.62%(p<0.001) on V45 and 4.74±2.26%(p<0.001) on V50 in bladder; and a mean dose reduction of 2.12±1.75Gy(p=0.004) and 2.84±1.53Gy(p<0.001) in right and left femoral head, respectively. Theremore » was no significant difference on OAR sparing between PVMAT-by-IMRT-model and PVMAT-by-VMAT-model. Conclusion: The IMRT model for the rectal cancer in the RapidPlan can be applied to for VMAT planning. However, the VMAT model is not suggested to use in the IMRT planning. Cautions should be taken that the planning model based on some technique may not feasible to other planning techniques.« less

Authors:
; ; ; ;  [1]
  1. Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)
Publication Date:
OSTI Identifier:
22649038
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; NEOPLASMS; PLANNING; RADIATION DOSES; RADIOTHERAPY; RECTUM; SIMULATION; TRAINING

Citation Formats

Lu, S, Peng, J, Li, K, Wang, J, and Hu, W. SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer. United States: N. p., 2016. Web. doi:10.1118/1.4956632.
Lu, S, Peng, J, Li, K, Wang, J, & Hu, W. SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer. United States. doi:10.1118/1.4956632.
Lu, S, Peng, J, Li, K, Wang, J, and Hu, W. Wed . "SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer". United States. doi:10.1118/1.4956632.
@article{osti_22649038,
title = {SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer},
author = {Lu, S and Peng, J and Li, K and Wang, J and Hu, W},
abstractNote = {Purpose: To investigate the dose volume histogram (DVH) prediction varieties based on intensity modulate radiotherapy (IMRT) plan or volume arc modulate radiotherapy (VMAT) plan models on the RapidPlan. Methods: Two DVH prediction models were generated in this study, including an IMRT model trained from 83 IMRT rectum plans and a VMAT model trained from 60 VMAT rectum plans. In the internal validation, 20 plans from each training database were selected to verify the clinical feasibility of the model. Then, 10 IMRT plans (PIMRT-by-IMRT-model) generated from IMRT model and 10 IMRT plans generated from VMAT model (PIMRT-by-VMAT-model) were compared on the dose to organs at risk (OAR), which included bladder, left and right femoral heads. The similar comparison was also performed on the VMAT plans generated from IMRT model (PVMAT-by-IMRT-model) and VMAT plans generated from VMAT (PVMAT-by-VMAT-model) model. Results: For the internal validation, all plans from IMRT or VMAT model shows significantly improvement on OAR sparing compared with the corresponded clinical ones. Compared to the PIMRT-by-VMAT-model, the PIMRT-by-IMRT-model has a reduction of 6.90±3.87%(p<0.001) on V40 6.63±3.62%(p<0.001) on V45 and 4.74±2.26%(p<0.001) on V50 in bladder; and a mean dose reduction of 2.12±1.75Gy(p=0.004) and 2.84±1.53Gy(p<0.001) in right and left femoral head, respectively. There was no significant difference on OAR sparing between PVMAT-by-IMRT-model and PVMAT-by-VMAT-model. Conclusion: The IMRT model for the rectal cancer in the RapidPlan can be applied to for VMAT planning. However, the VMAT model is not suggested to use in the IMRT planning. Cautions should be taken that the planning model based on some technique may not feasible to other planning techniques.},
doi = {10.1118/1.4956632},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less
  • Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1)more » IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.« less
  • Purpose: The complexity of IMRT delivery requires pre-treatment quality assurance and plan verification. KCCC has implemented IMRT clinically in few sites and will extend to all sites. Recently, our Varian linear accelerator and Eclipse planning system were upgraded from Millennium 80 to 120 Multileaf Collimator (MLC) and from v8.6 to 11.0 respectively. Our preliminary experience on the pre-treatment quality assurance verification is discussed. Methods: Eight Breast, Three Prostate and One Hypopharynx cancer patients were planned with step and shoot IMRT. All breast cases were planned before the upgrade with 60% cases treated. The ICRU 83 recommendations were followed for themore » dose prescription and constraints to OAR for all cases. Point dose measurement was done with CIRS cylindrical phantom and PTW 0.125 cc ionization chamber. Measured dose was compared with calculated dose at the point of measurement. Map CHECK diode array phantom was used for the plan verification. Planned and measured doses were compared by applying gamma index of 3% (dose difference) / 3 mm DTA (average distance to agreement). For all cases, a plan is considered to be successful if more than 95% of the tested diodes pass the gamma test. A prostate case was chosen to compare the plan verification before and after the upgrade. Results: Point dose measurement results were in agreement with the calculated doses. The maximum deviation observed was 2.3%. The passing rate of average gamma index was measured higher than 97% for the plan verification of all cases. Similar result was observed for plan verification of the chosen prostate case before and after the upgrade. Conclusion: Our preliminary experience from the obtained results validates the accuracy of our QA process and provides confidence to extend IMRT to all sites in Kuwait.« less
  • Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system.more » Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.« less
  • Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined bymore » American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and potentially beneficial, in clinical environment.« less