skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification

Abstract

Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs covering the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans andmore » 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less

Authors:
; ; ; ;  [1]
  1. Emory University, Atlanta, GA (United States)
Publication Date:
OSTI Identifier:
22649037
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; IRRADIATION; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; SPINAL CORD

Citation Formats

Yang, X, Tejani, M, Jiang, X, Elder, E, and Dhabaan, A. SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification. United States: N. p., 2016. Web. doi:10.1118/1.4956631.
Yang, X, Tejani, M, Jiang, X, Elder, E, & Dhabaan, A. SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification. United States. doi:10.1118/1.4956631.
Yang, X, Tejani, M, Jiang, X, Elder, E, and Dhabaan, A. 2016. "SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification". United States. doi:10.1118/1.4956631.
@article{osti_22649037,
title = {SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification},
author = {Yang, X and Tejani, M and Jiang, X and Elder, E and Dhabaan, A},
abstractNote = {Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs covering the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.},
doi = {10.1118/1.4956631},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) andmore » 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.« less
  • With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
  • Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less
  • Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
  • Purpose: To investigate the dosimetric impacts of OAR contour errors in prostate VMAT planning with a sensitivity analysis method. Methods: Ten randomly selected prostate VMAT patients were used to simulate OAR contour error in rectum and bladder. For each OAR 12 even spaced contour control points were selected in every three slices. For each simulation, only one of the control points was simulated to move inwards or outwards by up to 6 voxels and coordinates of adjacent voxels to that moving control point were moved accordingly with a 3D-spline smooth function. An in-house software was used to predict OARs dosimetricmore » endpoints based on geometric relationship between PTV and OAR. In this study, the V75, V70, V65, V60 of rectum and V80, V75, V70, V65 of bladder with and without perturbed contours were calculated and compared. Results: The percentage of OAR dose volume difference around the reference OAR contours were plotted as iso-error lines overlaid on CT images. The significant difference was shown in OAR contours adjacent to the PTV where high dose gradient exists. When one of the 12 points adjacent to the PTV moved up to 6 voxels, maximum errors of 1.99%, 2.46%, 2.89%, and 3.19% were found in V75, V70, V65, and V60 of the rectum, and 1.59%, 1.67%, 1.87%, and 1.90% were found in V80, V75, V70, and V65 of the bladder, respectively. Conclusion: We can quantify the dosimetric impact of OAR contouring error by evaluating the percentage of OAR dose volume changes in prostate VMAT planning. For the adaptive radiation therapy, the iso-error lines can provide the planner a guideline that which portion of contour needed to be checked carefully because dosimetric sensitivity of contour errors are different for different part of contours.« less