skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System

Abstract

Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system. Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, itmore » should be used as a secondary check tool to improve safety in the clinical treatment planning.« less

Authors:
; ;  [1]
  1. Shandong Cancer Hospital and Institute, China, Jinan, Shandong (China)
Publication Date:
OSTI Identifier:
22649031
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; NEOPLASMS; PLANNING; RADIATION DOSES; RADIOTHERAPY; VERIFICATION

Citation Formats

Liu, X, Yin, Y, and Lin, X. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System. United States: N. p., 2016. Web. doi:10.1118/1.4956625.
Liu, X, Yin, Y, & Lin, X. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System. United States. doi:10.1118/1.4956625.
Liu, X, Yin, Y, and Lin, X. Wed . "SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System". United States. doi:10.1118/1.4956625.
@article{osti_22649031,
title = {SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System},
author = {Liu, X and Yin, Y and Lin, X},
abstractNote = {Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system. Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.},
doi = {10.1118/1.4956625},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: The complexity of IMRT delivery requires pre-treatment quality assurance and plan verification. KCCC has implemented IMRT clinically in few sites and will extend to all sites. Recently, our Varian linear accelerator and Eclipse planning system were upgraded from Millennium 80 to 120 Multileaf Collimator (MLC) and from v8.6 to 11.0 respectively. Our preliminary experience on the pre-treatment quality assurance verification is discussed. Methods: Eight Breast, Three Prostate and One Hypopharynx cancer patients were planned with step and shoot IMRT. All breast cases were planned before the upgrade with 60% cases treated. The ICRU 83 recommendations were followed for themore » dose prescription and constraints to OAR for all cases. Point dose measurement was done with CIRS cylindrical phantom and PTW 0.125 cc ionization chamber. Measured dose was compared with calculated dose at the point of measurement. Map CHECK diode array phantom was used for the plan verification. Planned and measured doses were compared by applying gamma index of 3% (dose difference) / 3 mm DTA (average distance to agreement). For all cases, a plan is considered to be successful if more than 95% of the tested diodes pass the gamma test. A prostate case was chosen to compare the plan verification before and after the upgrade. Results: Point dose measurement results were in agreement with the calculated doses. The maximum deviation observed was 2.3%. The passing rate of average gamma index was measured higher than 97% for the plan verification of all cases. Similar result was observed for plan verification of the chosen prostate case before and after the upgrade. Conclusion: Our preliminary experience from the obtained results validates the accuracy of our QA process and provides confidence to extend IMRT to all sites in Kuwait.« less
  • Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1)more » IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.« less
  • Purpose: This study aims to validate multi-criteria optimization (MCO) against standard intensity modulated radiation therapy (IMRT) optimization for advanced cervical cancer in RayStation (v2.4, RaySearch Laboratories, Sweden). Methods: 10 advanced cervical cancer patients IMRT plans were randomly selected, these plans were designed with step and shoot optimization, new plans were then designed with MCO based on these plans,while keeping optimization conditions unchanged,comparison was made between both kinds of plans including the dose volume histogram parameters of PTV and OAR,and were analysed by pairing-t test. Results: We normalize the plan so that 95% volume of PTV achieved the prescribed dose(50Gy). Themore » volume of radiation 10, 20, 30, and 40 Gy of the rectum were reduced by 14.7%,26.8%,21.1%,10.5% respectively(P≥0.05). The mean dose of rectum were reduced by 7.2Gy(P≤0.05). There were no significant differences for the dosimetric parameters for the bladder. Conclusion: In comparision with standard IMRT optimization, MCO reduces the dose of organs at risk with the same PTV coverage,but the result needs further clinical evalution.« less
  • Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generatedmore » for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.« less
  • Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less