skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm

Abstract

Purpose: It is essential to assess the lung dose during TBI to reduce toxicity. Here we characterize the accuracy of the AAA and Acuros algorithms when using cerrobend lung shielding blocks at an extended distance for TBI. Methods: We positioned a 30×30×30 cm3 solid water slab phantom at 400 cm SSD and measured PDDs (Exradin A12 and PTW parallel plate ion chambers). A 2 cm thick, 10×10 cm2 cerrobend block was hung 2 cm in front of the phantom. This geometry was reproduced in the planning system for both AAA and Acuros. In AAA, the mass density of the cerrobend block was forced to 9.38 g/cm3 and in Acuros it was forced to 8.0 g/cm3 (limited to selecting stainless steel). Three different relative electron densities (RED) were tested for each algorithm; 4.97, 6.97, and 8.97. Results: PDDs from both Acuros and AAA underestimated the delivered dose. AAA calculated that depth dose was higher for RED of 4.97 as compared to 6.97 and 8.97 but still lower than measured. There was no change in the percent depth dose with changing relative electron densities for Acuros. Conclusion: Care should be taken before using AAA or Acuros with cerrobend blocks as the planningmore » system underestimates dose. Acuros limits the ability to modify RED when compared to AAA.« less

Authors:
;  [1]
  1. University of Miami, Miami, FL (United States)
Publication Date:
OSTI Identifier:
22649007
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; DEPTH DOSE DISTRIBUTIONS; ELECTRON DENSITY; IONIZATION CHAMBERS; STAINLESS STEELS

Citation Formats

Lamichhane, N, and Studenski, M. SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm. United States: N. p., 2016. Web. doi:10.1118/1.4956598.
Lamichhane, N, & Studenski, M. SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm. United States. doi:10.1118/1.4956598.
Lamichhane, N, and Studenski, M. Wed . "SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm". United States. doi:10.1118/1.4956598.
@article{osti_22649007,
title = {SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm},
author = {Lamichhane, N and Studenski, M},
abstractNote = {Purpose: It is essential to assess the lung dose during TBI to reduce toxicity. Here we characterize the accuracy of the AAA and Acuros algorithms when using cerrobend lung shielding blocks at an extended distance for TBI. Methods: We positioned a 30×30×30 cm3 solid water slab phantom at 400 cm SSD and measured PDDs (Exradin A12 and PTW parallel plate ion chambers). A 2 cm thick, 10×10 cm2 cerrobend block was hung 2 cm in front of the phantom. This geometry was reproduced in the planning system for both AAA and Acuros. In AAA, the mass density of the cerrobend block was forced to 9.38 g/cm3 and in Acuros it was forced to 8.0 g/cm3 (limited to selecting stainless steel). Three different relative electron densities (RED) were tested for each algorithm; 4.97, 6.97, and 8.97. Results: PDDs from both Acuros and AAA underestimated the delivered dose. AAA calculated that depth dose was higher for RED of 4.97 as compared to 6.97 and 8.97 but still lower than measured. There was no change in the percent depth dose with changing relative electron densities for Acuros. Conclusion: Care should be taken before using AAA or Acuros with cerrobend blocks as the planning system underestimates dose. Acuros limits the ability to modify RED when compared to AAA.},
doi = {10.1118/1.4956598},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: In this study, the comparison of dosimetric accuracy of Acuros XB and AAA algorithms were investigated for small radiation fields incident on homogeneous and heterogeneous geometries Methods: Small open fields of Truebeam 2.0 unit (1×1, 2×2, 3×3, 4×4 fields) were used for this study. The fields were incident on homogeneous phantom and in house phantom containing lung, air, and bone inhomogeneities. Using the same film batch, the net OD to dose calibration curve was obtaine dusing Trubeam 2.0 for 6 MV, 6 FFF, 10 MV, 10 FFF, 15 MV energies by delivering 0- 800 cGy. Films were scanned 48more » hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of Acuros XB and AAA algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement betweent wo algorithms and measurement. For Acuros XB, minimum gamma analysis passin grates between measured and calculated dose distributions were 99.3% and 98.1% for homogeneousand inhomogeneous fields in thecase of lung and bone respectively. For AAA, minimum gamma analysis passingrates were 99.1% and 96.5% for homogeneous and inhomogeneous fields respectively for all used energies and field sizes.In the case of the air heterogeneity, the differences were larger for both calculations algorithms. Over all, when compared to measurement, theAcuros XB had beter agreement than AAA. Conclusion: The Acuros XB calculation algorithm in the TPS is an improvemen tover theexisting AAA algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.« less
  • Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performedmore » using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm may very well be warranted.« less
  • Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less
  • Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction formore » AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MC« less
  • Purpose: To assess the accuracy against measurements of two photon dose calculation algorithms (Acuros XB and the Anisotropic Analytical algorithm AAA) for small fields usable in stereotactic treatments with particular focus on RapidArc. Methods: Acuros XB and AAA were configured for stereotactic use. Baseline accuracy was assessed on small jaw-collimated open fields for different values for the spot sizes parameter in the beam data: 0.0, 0.5, 1, and 2 mm. Data were calculated with a grid of 1 x 1 mm{sup 2}. Investigated fields were: 3 x 3, 2 x 2, 1 x 1, and 0.8 x 0.8 cm{sup 2}more » with a 6 MV photon beam generated from a Clinac2100iX (Varian, Palo Alto, CA). Profiles, PDD, and output factors were measured in water with a PTW diamond detector (detector size: 4 mm{sup 2}, thickness 0.4 mm) and compared to calculations. Four RapidArc test plans were optimized, calculated and delivered with jaw settings J3 x 3, J2 x 2, and J1 x 1 cm{sup 2}, the last was optimized twice to generate high (H) and low (L) modulation patterns. Each plan consisted of one partial arc (gantry 110 deg. to 250 deg.), and collimator 45 deg. Dose to isocenter was measured in a PTW Octavius phantom and compared to calculations. 2D measurements were performed by means of portal dosimetry with the GLAaS method developed at authors' institute. Analysis was performed with gamma pass-fail test with 3% dose difference and 2 mm distance to agreement thresholds. Results: Open square fields: penumbrae from open field profiles were in good agreement with diamond measurements for 1 mm spot size setting for Acuros XB, and between 0.5 and 1 mm for AAA. Maximum MU difference between calculations and measurements was 1.7% for Acuros XB (0.2% for fields greater than 1 x 1 cm{sup 2}) with 0.5 or 1 mm spot size. Agreement for AAA was within 0.7% (2.8%) for 0.5 (1 mm) spot size. RapidArc plans: doses were evaluated in a 4 mm diameter structure at isocenter and computed values differed from measurements by 0.0, -0.2, 5.5, and -3.4% for Acuros XB calculations (1 mm spot size), and of -0.1, 0.3, 6.7, and -1.2% for AAA, respectively for J3 x 3, J2 x 2, J1 x 1H, J1 x 1L RapidArc plans. Gamma Agreement Index from 2D dose analysis was higher than 95% for J3 x 3 and J2 x 2 plans, being around 80% for J1 x 1 maps. Sensitivity with respect to the dosimetric leaf gap and transmission factor MLC parameters was evaluated in the four RapidArc plans, showing the need to properly set the dosimetric leaf gap for accurate calculations. Conclusions: Acuros XB and AAA showed acceptable characteristics for stereotactic small fields if adequate tuning of configuration parameters is performed. Dose calculated for RapidArc stereotactic plans showed an acceptable agreement against point and 2D measurements. Both algorithms can therefore be considered safely applicable to stereotactic treatments.« less