skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-397: Evaluating the Impact of Bladder Filling Status for the Organs at Risk Dose Distribution in Cervical Cancer Patients with Intensity Modulated Radiotherapy

Abstract

Purpose: To investigate the impact of bladder filling status of the organs at risk (OARs) on dose distribution during intensity modulated radiotherapy (IMRT) for cervical cancer patients. Methods: Twelve cervical cancer patients treated with IMRT were selected for this study. The prescription dose was 45Gy/25 fractions with the 6 MV photon beam. All patients performed two CT scans, one with an empty bladder, the other one with bladder filled. For the registration of two CT scans, the fusion was automatically carried out upon the bony anatomy. The OARs (bladder, rectum, pelvic bone and small intestine) were delineated to planning CT to evaluate the dose distributions. These dose distributions were compared between empty bladder and bladder filling. Results: The bladder volume with empty bladder and bladder filling was 403.2±124.13cc and 101.4±87.5cc, respectively. There were no statistical differences between empty bladder and bladder filling in the mean value of pelvic bone V10Gy, V20Gy, V40Gy; rectum V40Gy and V45Gy. The bladder V40Gy and V45Gy were lower in the bladder filling group than in the empty bladder group (63.7%±5.8% vs 87.5%±7.8%, 45.1%±9.5% vs 62.4%±11.8%, respectively). The V45Gy for small intestine in the bladder filling group was significantly less than the empty bladder group (146.7cc±95.3ccmore » vs 245.7cc±101.8cc). Conclusion: Our study finds that the bladder filling status did not have a significant impact on dose distribution in the rectum and pelvic bone. However, the changes of bladder filling have a large impact on bladder and small intestine doses. A full bladder is strongly recommended during treatment for cervical cancer patients.« less

Authors:
 [1];  [2]
  1. Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)
  2. The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong (China)
Publication Date:
OSTI Identifier:
22648994
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BLADDER; COMPUTERIZED TOMOGRAPHY; HAZARDS; NEOPLASMS; PATIENTS; PHOTON BEAMS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; RECTUM; SKELETON

Citation Formats

Zhang, JY, and Hong, DL. SU-F-T-397: Evaluating the Impact of Bladder Filling Status for the Organs at Risk Dose Distribution in Cervical Cancer Patients with Intensity Modulated Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4956582.
Zhang, JY, & Hong, DL. SU-F-T-397: Evaluating the Impact of Bladder Filling Status for the Organs at Risk Dose Distribution in Cervical Cancer Patients with Intensity Modulated Radiotherapy. United States. doi:10.1118/1.4956582.
Zhang, JY, and Hong, DL. 2016. "SU-F-T-397: Evaluating the Impact of Bladder Filling Status for the Organs at Risk Dose Distribution in Cervical Cancer Patients with Intensity Modulated Radiotherapy". United States. doi:10.1118/1.4956582.
@article{osti_22648994,
title = {SU-F-T-397: Evaluating the Impact of Bladder Filling Status for the Organs at Risk Dose Distribution in Cervical Cancer Patients with Intensity Modulated Radiotherapy},
author = {Zhang, JY and Hong, DL},
abstractNote = {Purpose: To investigate the impact of bladder filling status of the organs at risk (OARs) on dose distribution during intensity modulated radiotherapy (IMRT) for cervical cancer patients. Methods: Twelve cervical cancer patients treated with IMRT were selected for this study. The prescription dose was 45Gy/25 fractions with the 6 MV photon beam. All patients performed two CT scans, one with an empty bladder, the other one with bladder filled. For the registration of two CT scans, the fusion was automatically carried out upon the bony anatomy. The OARs (bladder, rectum, pelvic bone and small intestine) were delineated to planning CT to evaluate the dose distributions. These dose distributions were compared between empty bladder and bladder filling. Results: The bladder volume with empty bladder and bladder filling was 403.2±124.13cc and 101.4±87.5cc, respectively. There were no statistical differences between empty bladder and bladder filling in the mean value of pelvic bone V10Gy, V20Gy, V40Gy; rectum V40Gy and V45Gy. The bladder V40Gy and V45Gy were lower in the bladder filling group than in the empty bladder group (63.7%±5.8% vs 87.5%±7.8%, 45.1%±9.5% vs 62.4%±11.8%, respectively). The V45Gy for small intestine in the bladder filling group was significantly less than the empty bladder group (146.7cc±95.3cc vs 245.7cc±101.8cc). Conclusion: Our study finds that the bladder filling status did not have a significant impact on dose distribution in the rectum and pelvic bone. However, the changes of bladder filling have a large impact on bladder and small intestine doses. A full bladder is strongly recommended during treatment for cervical cancer patients.},
doi = {10.1118/1.4956582},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To design and evaluate individualized nonadaptive and online-adaptive strategies based on a pretreatment established motion model for the highly deformable target volume in cervical cancer patients. Methods and Materials: For 14 patients, nine to ten variable bladder filling computed tomography (CT) scans were acquired at pretreatment and after 40 Gy. Individualized model-based internal target volumes (mbITVs) accounting for the cervix and uterus motion due to bladder volume changes were generated by using a motion-model constructed from two pretreatment CT scans (full and empty bladder). Two individualized strategies were designed: a nonadaptive strategy, using an mbITV accounting for the full-rangemore » of bladder volume changes throughout the treatment; and an online-adaptive strategy, using mbITVs of bladder volume subranges to construct a library of plans. The latter adapts the treatment online by selecting the plan-of-the-day from the library based on the measured bladder volume. The individualized strategies were evaluated by the seven to eight CT scans not used for mbITVs construction, and compared with a population-based approach. Geometric uniform margins around planning cervix-uterus and mbITVs were determined to ensure adequate coverage. For each strategy, the percentage of the cervix-uterus, bladder, and rectum volumes inside the planning target volume (PTV), and the clinical target volume (CTV)-to-PTV volume (volume difference between PTV and CTV) were calculated. Results: The margin for the population-based approach was 38 mm and for the individualized strategies was 7 to 10 mm. Compared with the population-based approach, the individualized nonadaptive strategy decreased the CTV-to-PTV volume by 48% {+-} 6% and the percentage of bladder and rectum inside the PTV by 5% to 45% and 26% to 74% (p < 0.001), respectively. Replacing the individualized nonadaptive strategy by an online-adaptive, two-plan library further decreased the percentage of bladder and rectum inside the PTV (0% to 10% and -1% to 9%; p < 0.004) and the CTV-to-PTV volume (4-96 ml). Conclusions: Compared with population-based margins, an individualized PTV results in better organ-at-risk sparing. Online-adaptive radiotherapy further improves organ-at-risk sparing.« less
  • Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less
  • Purpose: We evaluated heart sparing using an intensity-modulated radiotherapy (IMRT) plan with the left ventricle (LV) and/or the anterior myocardial territory (AMT) as additional organs at risk (OARs). Methods and Materials: A total of 10 patients with left-sided breast cancer were selected for dosimetric planning. Both lungs, the right breast, heart, LV, and AMT were defined as OARs. We generated one tangential field plan and four IMRT plans for each patient. We examined the dose-volume histogram parameters of the planning target volume and OARs. Results: Compared with the tangential field plan, the mean dose to the heart in the IMRTmore » plans did not show significant differences; however, the dose to the AMT and LV decreased by 18.7-45.4% and 10.8-37.4%, respectively. The maximal dose to the heart decreased by 18.6-35.3%, to the AMT by 22.0-45.1%, and to the LV by 23.5-45.0%, And the relative volumes of the heart (V{sub {>=}12}), AMT (V{sub >11}) and LV (V{sub >10}) decreased significantly with different levels, respectively. The volume of the heart, AMT, LV, both lungs, and right breast receiving {>=}5 Gy showed a significant increase. Compared with the IMRT (H) plan, the mean dose to the heart, AMT, and LV decreased by 17.5-21.5%, 25.2-29.8%, and 22.8-29.8% and the maximal dose by 13.6-20.6%, 23.1-29.6%, and 17.3-29.1%, respectively. The IMRT plans for both lungs and the right breast showed no significant differences. Conclusions: The IMRT plans with the addition of the AMT and/or LV as OARs considerably increased heart sparing. We recommend including the LV as an additional OAR in such plans.« less
  • Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV)more » were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.« less
  • Purpose: Intensity-modulated radiotherapy (IMRT) treatment for lung cancer is difficult due to the heterogeneous dose distribution and excessive dose to the organs at risk (OARs). We introduce a simple method based on the base dose function (BDF) in Eclipse treatment planning system to overcome the difficulties. Methods: Thirteen patients suffered from stage III non-small cell lung cancer (NSCLC) were enrolled in the study. Three kinds of approaches were applied to obtain clinically acceptable treatment plans: 1) conventionally optimizing method with hot and cold spots re-optimization (CO); 2) target-divided optimizing method (TDO) in which the optimization objective in the lung densitymore » of planning target volume (PTV) was set to 2 to 4 Gy higher than in the soft tissue density; 3) base dose function (BDF) in which the treatment plan was produced based on the original plan for re-optimization. CO, TDO and BDF methods were then compared in terms of conformity index (CI), homogeneity index (HI), OARs sparing and monitor units (MUs). Additionally, delta4, portal dosimetry and IMSure were used to measure the dose delivering accuracy. Results: The BDF technique provided more superior CI and HI than the other two methods. Moreover, the new method also reduced the lung, esophagus, heart and spinal cord dose. However, the BDF plans needed extra 15% and 10% MUs than the CO and TDO methods. Dose verification results demonstrated good and comparable γ pass rates among the three methods. Conclusion: The proposed BDF method greatly improves the dose homogeneity and OARs sparing in the IMRT treatment for lung cancer.« less