skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-387: A Novel Optimization Technique for Field in Field (FIF) Chestwall Radiation Therapy Using a Single Plan to Improve Delivery Safety and Treatment Planning Efficiency

Abstract

Purpose: A novel optimization technique was developed for field-in-field (FIF) chestwall radiotherapy using bolus every other day. The dosimetry was compared to currently used optimization. Methods: The prior five patients treated at our clinic to the chestwall and supraclavicular nodes with a mono-isocentric four-field arrangement were selected for this study. The prescription was 5040 cGy in 28 fractions, 5 mm bolus every other day on the tangent fields, 6 and/or 10 MV x-rays, and multileaf collimation.Novelly, tangents FIF segments were forward planned optimized based on the composite bolus and non-bolus dose distribution simultaneously. The prescription was spilt into 14 fractions for both bolus and non-bolus tangents. The same segments and monitor units were used for the bolus and non-bolus treatment. The plan was optimized until the desired coverage was achieved, minimized 105% hotspots, and a maximum dose of less than 108%. Each tangential field had less than 5 segments.Comparison plans were generated using FIF optimization with the same dosimetric goals, but using only the non-bolus calculation for FIF optimization. The non-bolus fields were then copied and bolus was applied. The same segments and monitor units were used for the bolus and non-bolus segments. Results: The prescription coverage of the chestwall,more » as defined by RTOG guidelines, was on average 51.8% for the plans that optimized bolus and non-bolus treatments simultaneous (SB) and 43.8% for the plans optimized to the non-bolus treatments (NB). Chestwall coverage of 90% prescription averaged to 80.4% for SB and 79.6% for NB plans. The volume receiving 105% of the prescription was 1.9% for SB and 0.8% for NB plans on average. Conclusion: Simultaneously optimizing for bolus and non-bolus treatments noticeably improves prescription coverage of the chestwall while maintaining similar hotspots and 90% prescription coverage in comparison to optimizing only to non-bolus treatments.« less

Authors:
; ; ; ; ; ;  [1]
  1. Bayonne Medical Center, Bayonne, New Jersey (United States)
Publication Date:
OSTI Identifier:
22648985
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; OPTIMIZATION; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; X RADIATION

Citation Formats

Tabibian, A, Kim, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, and Sheth, N. SU-F-T-387: A Novel Optimization Technique for Field in Field (FIF) Chestwall Radiation Therapy Using a Single Plan to Improve Delivery Safety and Treatment Planning Efficiency. United States: N. p., 2016. Web. doi:10.1118/1.4956572.
Tabibian, A, Kim, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, & Sheth, N. SU-F-T-387: A Novel Optimization Technique for Field in Field (FIF) Chestwall Radiation Therapy Using a Single Plan to Improve Delivery Safety and Treatment Planning Efficiency. United States. doi:10.1118/1.4956572.
Tabibian, A, Kim, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, and Sheth, N. Wed . "SU-F-T-387: A Novel Optimization Technique for Field in Field (FIF) Chestwall Radiation Therapy Using a Single Plan to Improve Delivery Safety and Treatment Planning Efficiency". United States. doi:10.1118/1.4956572.
@article{osti_22648985,
title = {SU-F-T-387: A Novel Optimization Technique for Field in Field (FIF) Chestwall Radiation Therapy Using a Single Plan to Improve Delivery Safety and Treatment Planning Efficiency},
author = {Tabibian, A and Kim, A and Rose, J and Alvelo, M and Perel, C and Laiken, K and Sheth, N},
abstractNote = {Purpose: A novel optimization technique was developed for field-in-field (FIF) chestwall radiotherapy using bolus every other day. The dosimetry was compared to currently used optimization. Methods: The prior five patients treated at our clinic to the chestwall and supraclavicular nodes with a mono-isocentric four-field arrangement were selected for this study. The prescription was 5040 cGy in 28 fractions, 5 mm bolus every other day on the tangent fields, 6 and/or 10 MV x-rays, and multileaf collimation.Novelly, tangents FIF segments were forward planned optimized based on the composite bolus and non-bolus dose distribution simultaneously. The prescription was spilt into 14 fractions for both bolus and non-bolus tangents. The same segments and monitor units were used for the bolus and non-bolus treatment. The plan was optimized until the desired coverage was achieved, minimized 105% hotspots, and a maximum dose of less than 108%. Each tangential field had less than 5 segments.Comparison plans were generated using FIF optimization with the same dosimetric goals, but using only the non-bolus calculation for FIF optimization. The non-bolus fields were then copied and bolus was applied. The same segments and monitor units were used for the bolus and non-bolus segments. Results: The prescription coverage of the chestwall, as defined by RTOG guidelines, was on average 51.8% for the plans that optimized bolus and non-bolus treatments simultaneous (SB) and 43.8% for the plans optimized to the non-bolus treatments (NB). Chestwall coverage of 90% prescription averaged to 80.4% for SB and 79.6% for NB plans. The volume receiving 105% of the prescription was 1.9% for SB and 0.8% for NB plans on average. Conclusion: Simultaneously optimizing for bolus and non-bolus treatments noticeably improves prescription coverage of the chestwall while maintaining similar hotspots and 90% prescription coverage in comparison to optimizing only to non-bolus treatments.},
doi = {10.1118/1.4956572},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To clinically evaluate the differences in volumetric modulated arc therapy (VMAT) treatment plan and delivery between two commercial treatment planning systems. Methods: Two commercial VMAT treatment planning systems with different VMAT optimization algorithms and delivery approaches were evaluated. This study included 16 clinical VMAT plans performed with the first system: 2 spine, 4 head and neck (HN), 2 brain, 4 pancreas, and 4 pelvis plans. These 16 plans were then re-optimized with the same number of arcs using the second treatment planning system. Planning goals were invariant between the two systems. Gantry speed, dose rate modulation, MLC modulation, planmore » quality, number of monitor units (MUs), VMAT quality assurance (QA) results, and treatment delivery time were compared between the 2 systems. VMAT QA results were performed using Mapcheck2 and analyzed with gamma analysis (3mm/3% and 2mm/2%). Results: Similar plan quality was achieved with each VMAT optimization algorithm, and the difference in delivery time was minimal. Algorithm 1 achieved planning goals by highly modulating the MLC (total distance traveled by leaves (TL) = 193 cm average over control points per plan), while maintaining a relatively constant dose rate (dose-rate change <100 MU/min). Algorithm 2 involved less MLC modulation (TL = 143 cm per plan), but greater dose-rate modulation (range = 0-600 MU/min). The average number of MUs was 20% less for algorithm 2 (ratio of MUs for algorithms 2 and 1 ranged from 0.5-1). VMAT QA results were similar for all disease sites except HN plans. For HN plans, the average gamma passing rates were 88.5% (2mm/2%) and 96.9% (3mm/3%) for algorithm 1 and 97.9% (2mm/2%) and 99.6% (3mm/3%) for algorithm 2. Conclusion: Both VMAT optimization algorithms achieved comparable plan quality; however, fewer MUs were needed and QA results were more robust for Algorithm 2, which more highly modulated dose rate.« less
  • Purpose: Advanced image post-processing techniques which enhance soft-tissue contrast in CT have not been widely employed for RT planning or delivery guidance. The purpose of this work is to assess the soft-tissue contrast enhancement from non-linear contrast enhancing filters and its impact in RT. The contrast enhancement reduces patient alignment uncertainties. Methods: Non-linear contrast enhancing methods, such as Best Contrast (Siemens), amplify small differences in X-ray attenuation between two adjacent structure without significantly increasing noise. Best Contrast (BC) separates a CT into two frequency bands. The low frequency band is modified by a non-linear scaling function before recombination with themore » high frequency band. CT data collected using a CT-on-rails (Definition AS Open, Siemens) during daily CT-guided RT for 6 prostate cancer patients and an image quality phantom (The Phantom Laboratory) were analyzed. Images acquired with a standard protocol (120 kVp, 0.6 pitch, 18 mGy CTDIvol) were processed before comparison to the unaltered images. Contrast and noise were measured in the the phantom. Inter-observer variation was assessed by placing prostate contours on the 12 CT study sets, 6 enhanced and 6 unaltered, in a blinded study involving 8 observers. Results: The phantom data demonstrate that BC increased the contrast between the 1.0% supra-slice element and the background substrate by 46.5 HU while noise increased by only 2.3 HU. Thus the contrast to noise ratio increased from 1.28 to 6.71. Furthermore, the variation in centroid position of the prostate contours was decreased from 1.3±0.4 mm to 0.8±0.3 mm. Thus the CTV-to-PTV margin was reduced by 1.1 mm. The uncertainty in delineation of the prostate/rectum edge decreased by 0.5 mm. Conclusion: As demonstrated in phantom and patient scans the BC filter accentuates soft-tissue contrast. This enhancement leads to reduced inter-observer variation, which should improve RT planning and delivery. Supported by Siemens.« less
  • Purpose: To compare the extended dose profile delivered by 3DCRT and VMAT techniques for flattened and flattening-filter-free(FFF) photon beams (6X, 6XFFF,10XFFF), with and without jaw-tracking (JT) on Varian TrueBeam linac. The goal is to determine which treatment technique/modality will minimize the peripheral photon dose exposure (and ultimately minimize the risk of second malignant neoplasms (SMN)) in pediatric patients. Methods: 3DCRT, VMAT, and jaw tracking VMAT (JTVMAT) plans with 6X, 6XFFF and 10XFFF x-ray beams were created on a 30×60×22.5cm solid water phantom with a 551 cc PTV. The 3DCRT plans consisted of a 4FLD arrangement. The optimization objectives for themore » single-arc VMAT plans was V95%Rx=98% to PTV and minimize dose to a 5cm diameter organ at risk (OAR). The OAR to PTV distance varied from 0–30cm along the long axis at 7.5cm depth. The dose to the center of the OAR was measured using a 0.6cc ion chamber. Results: Relative to the 6X flattened beam, the 10XFFF photon beam had the lowest dose in the penumbra and peripheral region (>15 cm) region by up to 20% and 40%, respectively for all modalities (3DCRT, VMAT, JTVMAT). The 6XFFF beams only showed a dose reduction in the peripheral region (by up to 20%). JT did not significantly affect the peripheral dose for all modalities and energies. Conclusion: Treating pediatric patients with a 10XFFF beam is the most effective way to reduce photon scatter dose in both the penumbra and peripheral regions. However, the neutron dose contribution resulting from the 10MV beam still needs to be considered. For all modalities, 6XFFF was the next effective method to reduce peripheral photon doses. 3DCRT beams had the lowest peripheral doses for all energies compared to VMAT and JTVMAT, however previous publications have shown that this comes at the expense of PTV conformity and OAR sparing.« less
  • Purpose: The objective was to utilize and evaluate diagnostic CT-MAR technique for radiation therapy treatment planning. Methods: A Toshiba-diagnostic-CT acquisition with SEMAR(Single-energy-MAR)-algorism was performed to make the metal-artifact-reduction (MAR) for patient treatment planning. CT-imaging datasets with and without SEMAR were taken on a Catphan-phantom. Two sets of CT-numbers were calibrated with the relative electron densities (RED). A tissue characterization phantom with Gammex various simulating material rods was used to establish the relationship between known REDs and corresponding CT-numbers. A GE-CT-sim acquisition was taken on the Catphan for comparison. A patient with bilateral hip arthroplasty was scanned in the radiotherapy CT-simmore » and the diagnostic SEMAR-CT on a flat panel. The derived SEMAR images were used as a primary CT dataset to create contours for the target, critical-structures, and for planning. A deformable registration was performed with VelocityAI to track voxel changes between SEMAR and CT-sim images. The SEMAR-CT images with minimal artifacts and high quality of geometrical and spatial integrity were employed for a treatment plan. Treatment-plans were evaluated based on deformable registration of SEMAR-CT and CT-sim dataset with assigned CT-numbers in the metal artifact regions in Eclipse v11 TPS. Results: The RED and CT-number relationships were consistent for the datasets in CT-sim and CT’s with and without SEMAR. SEMAR datasets with high image quality were used for PTV and organ delineation in the treatment planning process. For dose distribution to the PTV through the DVH analysis, the plan using CT-sim with the assigned CT-number showed a good agreement to those on deformable CT-SEMAR. Conclusion: A diagnostic-CT with MAR-algorithm can be utilized for radiotherapy treatment planning with CT-number calibrated to the RED. Treatment planning comparison and DVH shows a good agreement in the PTV and critical organs between the plans on CT-sim with assigned CT-number and the deformable SEMAR CT datasets.« less
  • Purpose: To perform the comparison of dose distributions and dosevolume- histograms generated by VMAT and conventional field-in-field technique for left-sided breast and chestwall cancers; to determine whether VMAT offers more dosimetric benefits than does the field-in-field technique. Methods: All VMAT and field-in-filed plans were produced in Eclipse(version 10). Five plans were generated for left-sided breast and leftsided chestwall with supraclavicular nodes, respectively. A clockwise arc (CW) and a counter-clockwise arc (CCW) were used with start and stop angles being 310o±10o and 140o±10o. Collimator angles were 30o for CW and 330o for CCW. The conformity index (CI) is the ratio ofmore » V95% over PTV. The homogeneity index (HI) is the ratio of the difference between D2% and D98% over the prescribed dose. The V5, as an indicator of low dose bath to organs-at-risk, was used for ipsilateral lung, heart, contralateral lung, and contralateral breast. The V20, as an indicator of radiation pneumonitis, was used for ipsilateral lung. Results: Breast/chestwall VMAT delivers much higher low dose bath to ipsilateral lung, contralateral lung and contralateral breast/chestwall for both intact breast and chestwall with nodes. V5 for heart is increased in VMAT plans. V20 for ipsilateral lung is lower in VMAT plans. PTV coverage is similar for both techniques. For one particular chestwall patient with supraclavicular and internal mammary nodes, VMAT offers superior dose coverage of PTVs with slightly more low-dose-wash to heart, contralateral lung and contralateral breast. Conclusion: This study indicates that there is generally no benefit using VMAT for left-sided intact breast, due to large low-dose-bath (5Gy) to normal tissues with insignificant improvement in PTV coverage. Dosimetric benefits will be seen in VMAT plans for some chestwall patients with large size, and/or internal mammary nodes, etc. Whether a chestwall patient is treated with VMAT should be carefully analyzed on an individual basis.« less