skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study

Abstract

Purpose: To provide a wide range of dose output for intensity modulation purposes while minimizing the beam penumbra for a new rotating cobalt therapy system. The highest dose rate needs to be maximized as well. Methods: The GEPTS Monte Carlo system is used to calculate the dose distribution from each tested Co-60 head for a wide range of field sizes (1×1 to 40×40 cm2). This includes the transport of photons (and secondary electrons) from the source through the collimation system (primary collimator, Y and × jaws, and MLCs) and finally in the water phantom. Photon transport includes Compton scattering (with electron binding effect), Rayleigh scattering, Photoelectric effect (with detailed simulation of fluorescence x-rays). Calculations are done for different system designs to reduce geometric penumbra and provide dose output modulation. Results: Taking into account different clinical requirements, the choice of a movable head (SAD = 70 to 80 cm) is made. The 120-leaf MLC (6-cm thick) entrance is at 32 cm from the bottom of the source (to reduce penumbra while allowing larger patient clearance). Three system designs (refereed here as S1–3) were simulated with different effective source sizes (2mm, 10mm and 17mm diameter). The effective point source is at mid-heightmore » of the 25-mm-long source. Using a 12000-Ci source, the designed Co-60 head can deliver a wide range of dose outputs (0.5 − 4 Gy/mn). A dose output of 2.2 Gy/mn can be delivered for a 10cm × 10cm field size with 1-cm penumbra using a 10mm effective source. Conclusion: A new 60Co-based VMAT machine is designed to meet different clinical requirements in term of dose output and beam penumbra. Outcomes from this study can be used for the design of 60Co machines for which a renewed interest is seen.« less

Authors:
; ; ; ;  [1]
  1. Fox Chase Cancer Center, Philadelphia, PA (United States)
Publication Date:
OSTI Identifier:
22648973
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COBALT 60; DESIGN; DOSE RATES; HEAD; MONTE CARLO METHOD; POINT SOURCES; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; X RADIATION

Citation Formats

Chibani, O, Fan, J, Tahanout, F, Eldib, A, and Ma, C. SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study. United States: N. p., 2016. Web. doi:10.1118/1.4956560.
Chibani, O, Fan, J, Tahanout, F, Eldib, A, & Ma, C. SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study. United States. doi:10.1118/1.4956560.
Chibani, O, Fan, J, Tahanout, F, Eldib, A, and Ma, C. 2016. "SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study". United States. doi:10.1118/1.4956560.
@article{osti_22648973,
title = {SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study},
author = {Chibani, O and Fan, J and Tahanout, F and Eldib, A and Ma, C},
abstractNote = {Purpose: To provide a wide range of dose output for intensity modulation purposes while minimizing the beam penumbra for a new rotating cobalt therapy system. The highest dose rate needs to be maximized as well. Methods: The GEPTS Monte Carlo system is used to calculate the dose distribution from each tested Co-60 head for a wide range of field sizes (1×1 to 40×40 cm2). This includes the transport of photons (and secondary electrons) from the source through the collimation system (primary collimator, Y and × jaws, and MLCs) and finally in the water phantom. Photon transport includes Compton scattering (with electron binding effect), Rayleigh scattering, Photoelectric effect (with detailed simulation of fluorescence x-rays). Calculations are done for different system designs to reduce geometric penumbra and provide dose output modulation. Results: Taking into account different clinical requirements, the choice of a movable head (SAD = 70 to 80 cm) is made. The 120-leaf MLC (6-cm thick) entrance is at 32 cm from the bottom of the source (to reduce penumbra while allowing larger patient clearance). Three system designs (refereed here as S1–3) were simulated with different effective source sizes (2mm, 10mm and 17mm diameter). The effective point source is at mid-height of the 25-mm-long source. Using a 12000-Ci source, the designed Co-60 head can deliver a wide range of dose outputs (0.5 − 4 Gy/mn). A dose output of 2.2 Gy/mn can be delivered for a 10cm × 10cm field size with 1-cm penumbra using a 10mm effective source. Conclusion: A new 60Co-based VMAT machine is designed to meet different clinical requirements in term of dose output and beam penumbra. Outcomes from this study can be used for the design of 60Co machines for which a renewed interest is seen.},
doi = {10.1118/1.4956560},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • There is an increasing interest in the use of inhomogeneity corrections for lung, air, and bone in radiotherapy treatment planning. Traditionally, corrections based on physical density have been used. Modern algorithms use the electron density derived from CT images. Small fields are used in both conformal radiotherapy and IMRT, however, their beam characteristics in inhomogeneous media have not been extensively studied. This work compares traditional and modern treatment planning algorithms to Monte Carlo simulations in and near low-density inhomogeneities. Field sizes ranging from 0.5 cm to 5 cm in diameter are projected onto a phantom containing inhomogeneities and depth dosemore » curves are compared. Comparisons of the Dose Perturbation Factors (DPF) are presented as functions of density and field size. Dose Correction Factors (DCF), which scale the algorithms to the Monte Carlo data, are compared for each algorithm. Physical scaling algorithms such as Batho and Equivalent Pathlength (EPL) predict an increase in dose for small fields passing through lung tissue, where Monte Carlo simulations show a sharp dose drop. The physical model-based collapsed cone convolution (CCC) algorithm correctly predicts the dose drop, but does not accurately predict the magnitude. Because the model-based algorithms do not correctly account for the change in backscatter, the dose drop predicted by CCC occurs farther downstream compared to that predicted by the Monte Carlo simulations. Beyond the tissue inhomogeneity all of the algorithms studied predict dose distributions in close agreement with Monte Carlo simulations. Dose-volume relationships are important in understanding the effects of radiation to the lung. The dose within the lung is affected by a complex function of beam energy, lung tissue density, and field size. Dose algorithms vary in their abilities to correctly predict the dose to the lung tissue. A thorough analysis of the effects of density, and field size on dose to the lung and how modern dose calculation algorithms compare to Monte Carlo data is presented in this research project. This work can be used as a basis to further refine an algorithm's accuracy in low-density media or to correct prior dosimetric results.« less
  • Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams inmore » different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.« less
  • Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MCmore » dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45 000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.« less
  • Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPUmore » framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc.« less
  • Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less