skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT

Abstract

Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MC dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dosemore » variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.« less

Authors:
; ; ;  [1];  [2]
  1. Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)
  2. UT MD Anderson Cancer Center, Houston, TX (United States)
Publication Date:
OSTI Identifier:
22648971
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BEAMS; MONTE CARLO METHOD; RADIATION DOSES; RADIOTHERAPY; SPATIAL RESOLUTION; SPINAL CORD; VARIATIONS; VERTEBRAE

Citation Formats

Venencia, C, Pino, M, Caussa, L, Garrigo, E, and Molineu, A. SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT. United States: N. p., 2016. Web. doi:10.1118/1.4956558.
Venencia, C, Pino, M, Caussa, L, Garrigo, E, & Molineu, A. SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT. United States. doi:10.1118/1.4956558.
Venencia, C, Pino, M, Caussa, L, Garrigo, E, and Molineu, A. 2016. "SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT". United States. doi:10.1118/1.4956558.
@article{osti_22648971,
title = {SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT},
author = {Venencia, C and Pino, M and Caussa, L and Garrigo, E and Molineu, A},
abstractNote = {Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MC dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.},
doi = {10.1118/1.4956558},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Spine SBRT treatments require high dose to PTV, located close to OAR. Treatment time should be short due to patient condition. The objective of this work is to compare HybridARC (HA) with sliding windows IMRT treatment modality Methods: A 6MV photon beam with 1000MU/min (SRS beam) produced by a NovalisTX (Varian/BrainLAB) equipped with HDMLC was used. The TPS was iPlan v4.5.3 (BrainLAB). Treatment plans comparison was done for 5 patients. Dose prescription was 27Gy in 3 fractions. HA used 1 arc plus 3 (HA), 5 (HA5) and 8 (HA8) IMRT fields. HA plans used OAR high. Between 60–40% ofmore » the prescribed dose was given by the arc. IMRT plans used 15 beams. Treatment times, MU, CI, V50% and V20% was used for plans comparisons. Results: Assuming IMRT plan as reference, the treatment time was reduced by −14.6% with HA8, −8.6% with HA5 and −23% with HA3. Increasing arc dose proportion in HA (arc MU > 2000) requires 2 or more arcs which increments treatment time. HA3 and HA5 exhibits beam hold off for fixed IMRT fields which in some cases need to be split in 2 segments. MU varied +4% with HA8, +3.7% with HA5 and −5% with HA3. CI increased +5% with HA8, +23% with HA5 and +37% with H3. V50% increased +5% with HA8, +43% with HA5 and +62% with HA3. V20% increased +13.2% with HA8, +7.6% with HA5 and +1% with HA3. OARs doses were keep within tolerances in all plans. Conclusion: HybridARC for spine SBRT with 8 fix IMRT gantry angle shows a treatment time reduction, comparable MU and similar dose conformation to dMLC IMRT. HybridARC with 5 or 3 fix IMRT fields produce undesirable beam hold off, worse dose conformation and increments the total volume with 50% of the prescribed dose.« less
  • Purpose: Investigating the relative sensitivity of Monte Carlo (MC) and Pencil Beam (PB) dose calculation algorithms to low-Z (titanium) metallic artifacts is important for accurate and consistent dose reporting in post¬operative spinal RS. Methods: Sensitivity analysis of MC and PB dose calculation algorithms on the Monaco v.3.3 treatment planning system (Elekta CMS, Maryland Heights, MO, USA) was performed using CT images reconstructed without (plain) and with Orthopedic Metal Artifact Reduction (OMAR; Philips Healthcare system, Cleveland, OH, USA). 6MV and 10MV volumetric-modulated arc (VMAT) RS plans were obtained for MC and PB on the plain and OMAR images (MC-plain/OMAR and PB-plain/OMAR).more » Results: Maximum differences in dose to 0.2cc (D0.2cc) of spinal cord and cord +2mm for 6MV and 10MV VMAT plans were 0.1Gy between MC-OMAR and MC-plain, and between PB-OMAR and PB-plain. Planning target volume (PTV) dose coverage changed by 0.1±0.7% and 0.2±0.3% for 6MV and 10MV from MC-OMAR to MC-plain, and by 0.1±0.1% for both 6MV and 10 MV from PB-OMAR to PB-plain, respectively. In no case for both MC and PB the D0.2cc to spinal cord was found to exceed the planned tolerance changing from OMAR to plain CT in dose calculations. Conclusion: Dosimetric impacts of metallic artifacts caused by low-Z metallic spinal hardware (mainly titanium alloy) are not clinically important in VMAT-based spine RS, without significant dependence on dose calculation methods (MC and PB) and photon energy ≥ 6MV. There is no need to use one algorithm instead of the other to reduce uncertainty for dose reporting. The dose calculation method that should be used in spine RS shall be consistent with the usual clinical practice.« less
  • The accuracy of dose computation within the lungs depends strongly on the performance of the calculation algorithm in regions of electronic disequilibrium that arise near tissue inhomogeneities with large density variations. There is a lack of data evaluating the performance of highly developed analytical dose calculation algorithms compared to Monte Carlo computations in a clinical setting. We compared full Monte Carlo calculations (performed by our Monte Carlo dose engine MCDE) with two different commercial convolution/superposition (CS) implementations (Pinnacle-CS and Helax-TMS's collapsed cone model Helax-CC) and one pencil beam algorithm (Helax-TMS's pencil beam model Helax-PB) for 10 intensity modulated radiation therapymore » (IMRT) lung cancer patients. Treatment plans were created for two photon beam qualities (6 and 18 MV). For each dose calculation algorithm, patient, and beam quality, the following set of clinically relevant dose-volume values was reported: (i) minimal, median, and maximal dose (D{sub min}, D{sub 50}, and D{sub max}) for the gross tumor and planning target volumes (GTV and PTV); (ii) the volume of the lungs (excluding the GTV) receiving at least 20 and 30 Gy (V{sub 20} and V{sub 30}) and the mean lung dose; (iii) the 33rd percentile dose (D{sub 33}) and D{sub max} delivered to the heart and the expanded esophagus; and (iv) D{sub max} for the expanded spinal cord. Statistical analysis was performed by means of one-way analysis of variance for repeated measurements and Tukey pairwise comparison of means. Pinnacle-CS showed an excellent agreement with MCDE within the target structures, whereas the best correspondence for the organs at risk (OARs) was found between Helax-CC and MCDE. Results from Helax-PB were unsatisfying for both targets and OARs. Additionally, individual patient results were analyzed. Within the target structures, deviations above 5% were found in one patient for the comparison of MCDE and Helax-CC, while all differences between MCDE and Pinnacle-CS were below 5%. For both Pinnacle-CS and Helax-CC, deviations from MCDE above 5% were found within the OARs: within the lungs for two (6 MV) and six (18 MV) patients for Pinnacle-CS, and within other OARs for two patients for Helax-CC (for D{sub max} of the heart and D{sub 33} of the expanded esophagus) but only for 6 MV. For one patient, all four algorithms were used to recompute the dose after replacing all computed tomography voxels within the patient's skin contour by water. This made all differences above 5% between MCDE and the other dose calculation algorithms disappear. Thus, the observed deviations mainly arose from differences in particle transport modeling within the lungs, and the commissioning of the algorithms was adequately performed (or the commissioning was less important for this type of treatment). In conclusion, not one pair of the dose calculation algorithms we investigated could provide results that were consistent within 5% for all 10 patients for the set of clinically relevant dose-volume indices studied. As the results from both CS algorithms differed significantly, care should be taken when evaluating treatment plans as the choice of dose calculation algorithm may influence clinical results. Full Monte Carlo provides a great benchmarking tool for evaluating the performance of other algorithms for patient dose computations.« less
  • Purpose: To present a comparison of the accuracy of two commercial electron beam treatment planning systems: one uses a Monte Carlo algorithm and the other uses a pencil beam model for dose calculations. Methods and Materials: For the same inhomogeneous phantoms and incident beams, measured dose distributions are compared with those predicted by the commercial treatment planning systems at different source-to-surface distances (SSDs). The accuracy of the pencil beam system for monitor unit calculations is also tested at various SSDs. Beam energies of 6-20 MeV are used. Results: The pencil beam model shows some serious limitations in predicting hot andmore » cold spots in inhomogeneous phantoms for small low- or high-density inhomogeneities, especially for low-energy electron beams, such as 9 MeV. Errors (>10%) are seen in predicting high- and low-dose variations for three-dimensional inhomogeneous phantoms. The Monte Carlo calculated results generally agree much better with measurements. Conclusions: The accuracy of the pencil beam calculations is difficult to predict because it depends on both the inhomogeneity geometry and location. The pencil beam calculations using CADPLAN result in large errors in phantoms containing three-dimensional type inhomogeneities. The Monte Carlo method in Theraplan Plus dose calculation module is shown to be more robust in accurately predicting dose distributions and monitor units under the tested conditions.« less
  • To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less