skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose

Abstract

Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and wasmore » 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.« less

Authors:
; ;  [1]
  1. UT MD Anderson Cancer Center, Houston, TX (United States)
Publication Date:
OSTI Identifier:
22648969
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; BEAM PROFILES; DEPTH DOSE DISTRIBUTIONS; LINEAR ACCELERATORS; MONTE CARLO METHOD; PHOTON BEAMS

Citation Formats

Prajapati, S, Yan, Y, and Gifford, K. SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose. United States: N. p., 2016. Web. doi:10.1118/1.4956556.
Prajapati, S, Yan, Y, & Gifford, K. SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose. United States. doi:10.1118/1.4956556.
Prajapati, S, Yan, Y, and Gifford, K. 2016. "SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose". United States. doi:10.1118/1.4956556.
@article{osti_22648969,
title = {SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose},
author = {Prajapati, S and Yan, Y and Gifford, K},
abstractNote = {Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.},
doi = {10.1118/1.4956556},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: A linac delivering intensity-modulated radiotherapy (IMRT) can benefit from a flattening filter free (FFF) design which offers higher dose rates and reduced accelerator head scatter than for conventional (flattened) delivery. This reduction in scatter simplifies beam modeling, and combining a Monte Carlo dose engine with a FFF accelerator could potentially increase dose calculation accuracy. The objective of this work was to model a FFF machine using an adapted version of a previously published virtual source model (VSM) for Monte Carlo calculations and to verify its accuracy. Methods: An Elekta Synergy linear accelerator operating at 6 MV has been modifiedmore » to enable irradiation both with and without the flattening filter (FF). The VSM has been incorporated into a commercially available treatment planning system (Monaco Trade-Mark-Sign v 3.1) as VSM 1.6. Dosimetric data were measured to commission the treatment planning system (TPS) and the VSM adapted to account for the lack of angular differential absorption and general beam hardening. The model was then tested using standard water phantom measurements and also by creating IMRT plans for a range of clinical cases. Results: The results show that the VSM implementation handles the FFF beams very well, with an uncertainty between measurement and calculation of <1% which is comparable to conventional flattened beams. All IMRT beams passed standard quality assurance tests with >95% of all points passing gamma analysis ({gamma} < 1) using a 3%/3 mm tolerance. Conclusions: The virtual source model for flattened beams was successfully adapted to a flattening filter free beam production. Water phantom and patient specific QA measurements show excellent results, and comparisons of IMRT plans generated in conventional and FFF mode are underway to assess dosimetric uncertainties and possible improvements in dose calculation and delivery.« less
  • The absorbed dose to tissue surrounding a syringe containing technetium-99m is evaluated with a computer code using Monte Carlo photon-transport techniques. The syringe geometry is represented as a right circular cylinder. The cylindrical symmetry of the absorbed-dose distribution is assumed by calculating the absorbed dose in a volume region shaped like a circular annulus with a square cross section. The deposition of electron energy is assumed to take place at the point where the photon interacts. For a 5-ml syringe containing 3 ml of liquid, the absorbed dose at the midpoint of the liquid region and 0.5 mm from themore » outer syringe surface was 16.4 mrads per millicurie-minute. This is in good agreement with calculations and measurements reported in the literature. The accuracy of the program was tested by reproducing M. Berger's values of the specific absorbed fractions for the point-isotropic sources in water. The code has been written in a flexible format. Any photon energy or mixture of photon energies, in any proportion, can be used as input to the program. The syringe dimensions and the volume of the liquid (source) region are variable input parameters. This code is intended to be used to produce absorbed-dose results a) for monoenergetic photons, b) for a variety of syringe sizes or source volumes, and c) to evaluate or optimize nonhomogeneous shielding materials such as lead, tungsten, uranium, and combinations of various materials.« less
  • A multileaf collimator (MLC) model, 'MATMLC', was developed to simulate MLCs for Monte Carlo (MC) dose calculations of intensity-modulated radiation therapy (IMRT). This model describes MLCs using matrices of regions, each of which can be independently defined for its material and geometry, allowing flexibility in simulating MLCs from various manufacturers. The free parameters relevant to the dose calculations with this MLC model included MLC leaf density, interleaf air gap, and leaf geometry. To commission the MLC model and its free parameters for the Varian Millennium MLC-120 (Varian Oncology Systems, Palo Alto, CA), we used the following leaf patterns: (1) MLC-blockedmore » fields to test the effects of leaf transmission and leakage; (2) picket-fence fields to test the effects of the interleaf air gap and tongue-groove design; and (3) abutting-gap fields to test the effects of rounded leaf ends. Transmission ratios and intensity maps for these leaf patterns were calculated with various sets of modeling parameters to determine their dosimetric effects, sensitivities, and their optimal combinations to give the closest agreement with measured results. Upon commissioning the MLC model, we computed dose distributions for clinical IMRT plans using the MC system and verified the results with those from ion chamber and thermoluminescent dosimeter measurements in water phantoms and anthropomorphic phantoms. This study showed that the MLC transmission ratios were strongly dependent on both leaf density and the interleaf air gap. The effect of interleaf air gap and tongue-groove geometry can be determined most effectively through fence-type MLC patterns. Using the commissioned MLC model, we found that the calculated dose from the MC system agreed with the measured data within clinically acceptable criteria from low- to high-dose regions, showing that the model is acceptable for clinical applications.« less
  • Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less