skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

Abstract

Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parameters of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage andmore » physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less

Authors:
;  [1]
  1. Shiraz University, Shiraz, I.R. Iran (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22648964
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 62 RADIOLOGY AND NUCLEAR MEDICINE; COLLIMATORS; IAEA; LEAVES; LINEAR ACCELERATORS; MONTE CARLO METHOD; PHASE SPACE; RADIATION DOSE DISTRIBUTIONS; TUNGSTEN ALLOYS

Citation Formats

Haddad, K, and Alopoor, H. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data. United States: N. p., 2016. Web. doi:10.1118/1.4956551.
Haddad, K, & Alopoor, H. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data. United States. doi:10.1118/1.4956551.
Haddad, K, and Alopoor, H. Wed . "SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data". United States. doi:10.1118/1.4956551.
@article{osti_22648964,
title = {SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data},
author = {Haddad, K and Alopoor, H},
abstractNote = {Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parameters of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.},
doi = {10.1118/1.4956551},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To evaluate VMAT treatment plans generated with HD120 MLC and Millennium 120 MLC between two matched linacs and to determine if one can back up the other. Methods: The 6x photon beams are matched for our Varian TrueBeam STx and Trilogy linacs, which are equipped with HD120 MLC and Millennium 120 MLC, respectively. Three prostate and three brain VMAT plans were used for the evaluation. Five plans (three prostate and two brain plans) were originally generated with the TrueBeam STx and re-computed with the Trilogy. One brain plan was evaluated the other way around. For each plan, the PTVmore » coverage of V95 was made the same between two linacs. The dosimetric differences associated with the plans were compared using: 1) Percentage mean dose differences to the PTV, 2) Homogeneity index, HI = (Dmax − Dmin)/Dmean for the PTV. For prostate plans, the mean dose differences to the rectum were evaluated. While for brain plans, the percentage max dose differences to the lenses (left and right lens) were evaluated. Results: For three prostate plans, the average of the percentage mean dose differences to the PTV was 0.5 ± 0.1% and the HI was 0.1 ± 0.0%. The average of the percentage mean dose difference to the rectum was 3.5 ± 0.5%. For three brain plans, the average of the percentage mean dose differences to the PTV was 0.2 ± 1.1% and the HI was 0.2 ± 0.1%. The average of the percentage max dose differences to the lenses was 22.9 ± 4.0%. Conclusion: For prostate VMAT plans, changing the treatment from the TrueBeam STx to the Trilogy does not necessarily need re-optimization. But for brain plans, in order to minimize dose to the lenses, it is recommended to re-optimize the plan if changing the treatment between these two linacs.« less
  • Purpose: To develop a practical method for routine QA of the MLC of a Tomotherapy unit using ArcCheck. Methods: Two standard test plans were used in this study. One was a helical test, in which the central leaves No. 32 and 33 opened simultaneously for 277.8ms at projections centered at 0°, 120° and 240° gantry angles. The other test plan was a static test with the gantry angle set at 0°, 45°, 90° and 135° respectively and leaves No. 32 and 33 opened sequentially for total 20s which was further divided into eleven or ten segments at each beam angle.more » The ArcCheck was isocentrically set up and adjusted for couch sag. Movie files which took a snapshot exposure every 50ms were recorded. The start/stop time of leaf open was decided by the ramp-up/ramp-down of the detectors. Results: The percentage differences between measured and planned leaf open time were calculated to be within 0.5% in all the tests. In static test, if leaves are synchronized perfectly, the sum of the two detectors’ signals after normalization should equal one when the leaves are in transition. Our results showed mean values of 0.982, 0.983, 0.978 and 0.995 at static gantry angle 0°, 45°, 90° and 135° respectively. Conclusion: A method for estimating the Tomotherapy binary MLC leaf open time using ArcCheck is proposed and proved to be precise enough to verify the planned leaf open time as small as 277.8ms. This method also makes the observation and quantification of the synchronization of leaves possible.« less
  • Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
  • The aim of this study is to assess the accuracy of a convolution-based algorithm (anisotropic analytical algorithm [AAA]) implemented in the Eclipse planning system for intensity-modulated radiosurgery (IMRS) planning of small cranial targets by using a 5-mm leaf-width multileaf collimator (MLC). Overall, 24 patient-based IMRS plans for cranial lesions of variable size (0.3 to 15.1 cc) were planned (Eclipse, AAA, version 10.0.28) using fixed field-based IMRS produced by a Varian linear accelerator equipped with a 120 MLC (5-mm width on central leaves). Plan accuracy was evaluated according to phantom-based measurements performed with radiochromic film (EBT2, ISP, Wayne, NJ). Film 2Dmore » dose distributions were performed with the FilmQA Pro software (version 2011, Ashland, OH) by using the triple-channel dosimetry method. Comparison between computed and measured 2D dose distributions was performed using the gamma method (3%/1 mm). Performance of the MLC was checked by inspection of the DynaLog files created by the linear accelerator during the delivery of each dynamic field. The absolute difference between the calculated and measured isocenter doses for all the IMRS plans was 2.5% ± 2.1%. The gamma evaluation method resulted in high average passing rates of 98.9% ± 1.4% (red channel) and 98.9% ± 1.5% (blue and green channels). DynaLog file analysis revealed a maximum root mean square error of 0.46 mm. According to our results, we conclude that the Eclipse/AAA algorithm provides accurate cranial IMRS dose distributions that may be accurately delivered by a Varian linac equipped with a Millennium 120 MLC.« less
  • Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less