skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-355: Evaluation of Knowledge-Based Planning Model for the Cervical Cancer Radiotherapy

Abstract

Purpose: The Varian RapidPlan™ is a commercial knowledge-based optimization process which uses a set of clinically used treatment plans to train a model that can predict individualized dose-volume objectives. The purpose of this study is to evaluate the performance of RapidPlan to generate intensity modulated radiation therapy (IMRT) plans for cervical cancer. Methods: Totally 70 IMRT plans for cervical cancer with varying clinical and physiological indications were enrolled in this study. These patients were all previously treated in our institution. There were two prescription levels usually used in our institution: 45Gy/25 fractions and 50.4Gy/28 fractions. 50 of these plans were selected to train the RapidPlan model for predicting dose-volume constraints. After model training, this model was validated with 10 plans from training pool(internal validation) and additional other 20 new plans(external validation). All plans used for the validation were re-optimized with the original beam configuration and the generated priorities from RapidPlan were manually adjusted to ensure that re-optimized DVH located in the range of the model prediction. DVH quantitative analysis was performed to compare the RapidPlan generated and the original manual optimized plans. Results: For all the validation cases, RapidPlan based plans (RapidPlan) showed similar or superior results compared to themore » manual optimized ones. RapidPlan increased the result of D98% and homogeneity in both two validations. For organs at risk, the RapidPlan decreased mean doses of bladder by 1.25Gy/1.13Gy (internal/external validation) on average, with p=0.12/p<0.01. The mean dose of rectum and bowel were also decreased by an average of 2.64Gy/0.83Gy and 0.66Gy/1.05Gy,with p<0.01/ p<0.01and p=0.04/<0.01 for the internal/external validation, respectively. Conclusion: The RapidPlan model based cervical cancer plans shows ability to systematically improve the IMRT plan quality. It suggests that RapidPlan has great potential to make the treatment planning process more efficient.« less

Authors:
; ;  [1]
  1. Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)
Publication Date:
OSTI Identifier:
22648955
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; NEOPLASMS; PLANNING; RADIOTHERAPY; TRAINING; UTERUS; VALIDATION

Citation Formats

Chen, X, Wang, J, and Hu, W. SU-F-T-355: Evaluation of Knowledge-Based Planning Model for the Cervical Cancer Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4956540.
Chen, X, Wang, J, & Hu, W. SU-F-T-355: Evaluation of Knowledge-Based Planning Model for the Cervical Cancer Radiotherapy. United States. doi:10.1118/1.4956540.
Chen, X, Wang, J, and Hu, W. Wed . "SU-F-T-355: Evaluation of Knowledge-Based Planning Model for the Cervical Cancer Radiotherapy". United States. doi:10.1118/1.4956540.
@article{osti_22648955,
title = {SU-F-T-355: Evaluation of Knowledge-Based Planning Model for the Cervical Cancer Radiotherapy},
author = {Chen, X and Wang, J and Hu, W},
abstractNote = {Purpose: The Varian RapidPlan™ is a commercial knowledge-based optimization process which uses a set of clinically used treatment plans to train a model that can predict individualized dose-volume objectives. The purpose of this study is to evaluate the performance of RapidPlan to generate intensity modulated radiation therapy (IMRT) plans for cervical cancer. Methods: Totally 70 IMRT plans for cervical cancer with varying clinical and physiological indications were enrolled in this study. These patients were all previously treated in our institution. There were two prescription levels usually used in our institution: 45Gy/25 fractions and 50.4Gy/28 fractions. 50 of these plans were selected to train the RapidPlan model for predicting dose-volume constraints. After model training, this model was validated with 10 plans from training pool(internal validation) and additional other 20 new plans(external validation). All plans used for the validation were re-optimized with the original beam configuration and the generated priorities from RapidPlan were manually adjusted to ensure that re-optimized DVH located in the range of the model prediction. DVH quantitative analysis was performed to compare the RapidPlan generated and the original manual optimized plans. Results: For all the validation cases, RapidPlan based plans (RapidPlan) showed similar or superior results compared to the manual optimized ones. RapidPlan increased the result of D98% and homogeneity in both two validations. For organs at risk, the RapidPlan decreased mean doses of bladder by 1.25Gy/1.13Gy (internal/external validation) on average, with p=0.12/p<0.01. The mean dose of rectum and bowel were also decreased by an average of 2.64Gy/0.83Gy and 0.66Gy/1.05Gy,with p<0.01/ p<0.01and p=0.04/<0.01 for the internal/external validation, respectively. Conclusion: The RapidPlan model based cervical cancer plans shows ability to systematically improve the IMRT plan quality. It suggests that RapidPlan has great potential to make the treatment planning process more efficient.},
doi = {10.1118/1.4956540},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}