skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand

Abstract

Purpose: A comprehensive survey of Australasian radiation oncology physics departments was undertaken to capture a snapshot of current usage, commissioning and QA practices for intensity-modulated therapies. Methods: An online survey was developed and advertised to Australian and New Zealand radiation oncology physicists through the local college (ACPSEM) in April 2015. The survey consisted of 147 questions in total, covering IMRT, VMAT and Tomotherapy, and details specific to different treatment planning systems. Questions captured detailed information on equipment, policies and procedures for the commissioning and QA of each treatment technique. Results: 41 partial or complete responses were collected, representing 59 departments out of the 78 departments operational. 137 and 84 linacs from these departments were using IMRT and VMAT respectively, from a total 150 linacs. 100% and 78% of respondents were treating with IMRT and VMAT respectively. There are at least 8 different treatment planning systems being used for IMRT or VMAT, and large variations in all aspects of QA policies and procedures. 29 responses indicated 72 methods routinely used for pre-treatment QA, when breaking down by device and analysis type. Similar numbers of departments use field-by-field analysis compared to composite analysis (56% to 44%) while a majority use true gantrymore » angle delivery compared to fixed gantry at 0° (72% to 28%). 19 different implementations of gamma index analysis parameters were reported from 33 responses. A follow-up one-day workshop to highlight the results, discuss the role of QA and share equipment-specific knowledge across users was conducted in November 2015. Conclusion: While IMRT and VMAT are almost universally available in Australasia, large variations in practice indicate a need for national or consensus guidelines.« less

Authors:
 [1];  [2];  [3];  [2]
  1. Sydney West Radiation Oncology Network, Sydney (Australia)
  2. (Australia)
  3. School of Physics, University of Sydney (Australia)
Publication Date:
OSTI Identifier:
22648905
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; COMPUTERIZED TOMOGRAPHY; CT-GUIDED RADIOTHERAPY; EDUCATIONAL FACILITIES; LINEAR ACCELERATORS

Citation Formats

Barber, J, School of Physics, University of Sydney, Vial, P, and Liverpool and Macarthur Cancer Therapy Centres and the Ingham Institute, Sydney. SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand. United States: N. p., 2016. Web. doi:10.1118/1.4956481.
Barber, J, School of Physics, University of Sydney, Vial, P, & Liverpool and Macarthur Cancer Therapy Centres and the Ingham Institute, Sydney. SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand. United States. doi:10.1118/1.4956481.
Barber, J, School of Physics, University of Sydney, Vial, P, and Liverpool and Macarthur Cancer Therapy Centres and the Ingham Institute, Sydney. Wed . "SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand". United States. doi:10.1118/1.4956481.
@article{osti_22648905,
title = {SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand},
author = {Barber, J and School of Physics, University of Sydney and Vial, P and Liverpool and Macarthur Cancer Therapy Centres and the Ingham Institute, Sydney},
abstractNote = {Purpose: A comprehensive survey of Australasian radiation oncology physics departments was undertaken to capture a snapshot of current usage, commissioning and QA practices for intensity-modulated therapies. Methods: An online survey was developed and advertised to Australian and New Zealand radiation oncology physicists through the local college (ACPSEM) in April 2015. The survey consisted of 147 questions in total, covering IMRT, VMAT and Tomotherapy, and details specific to different treatment planning systems. Questions captured detailed information on equipment, policies and procedures for the commissioning and QA of each treatment technique. Results: 41 partial or complete responses were collected, representing 59 departments out of the 78 departments operational. 137 and 84 linacs from these departments were using IMRT and VMAT respectively, from a total 150 linacs. 100% and 78% of respondents were treating with IMRT and VMAT respectively. There are at least 8 different treatment planning systems being used for IMRT or VMAT, and large variations in all aspects of QA policies and procedures. 29 responses indicated 72 methods routinely used for pre-treatment QA, when breaking down by device and analysis type. Similar numbers of departments use field-by-field analysis compared to composite analysis (56% to 44%) while a majority use true gantry angle delivery compared to fixed gantry at 0° (72% to 28%). 19 different implementations of gamma index analysis parameters were reported from 33 responses. A follow-up one-day workshop to highlight the results, discuss the role of QA and share equipment-specific knowledge across users was conducted in November 2015. Conclusion: While IMRT and VMAT are almost universally available in Australasia, large variations in practice indicate a need for national or consensus guidelines.},
doi = {10.1118/1.4956481},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected formore » the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.« less
  • Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs andmore » dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical that planners do not use too restrictive NT constraints during VMAT optimization.Tomotherapy plan was not as sensitive to NT constraints,however,care shall be taken to ensure NT is not pushed too hard.These results are relevant for clinical practice.The biological effect of higher Dmax and increased target heterogeneity needs further study.« less
  • Purpose: To compare biophysical indices of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) treatment plans for whole brain radiation therapy following the NRG-CC001 protocol. Methods: In this retrospective study, a total of fifteen patients were planned with Varian Eclipse Treatment Planning System using VMAT (RapidArc) and IMRT techniques. The planning target volume (PTV) was defined as the whole brain volume excluding a uniform three-dimensional 5mm expansion of the hippocampus volume. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 95% of the target volume receiving 100% of themore » prescribed dose. The NRG Oncology protocol guidelines were followed for contouring and dose-volume constraints. A single radiation oncologist evaluated all treatment plans. Calculations of statistical significance were performed using Student’s paired t-test. Results: All VMAT and IMRT plans met the NRG-CC001 protocol dose-volume criteria. The average equivalent uniform dose (EUD) for the PTV for VMAT vs. IMRT was respectively (19.05±0.33 Gy vs. 19.38±0.47 Gy) for α/β of 2 Gy and (19.47±0.30 Gy vs. 19.84±0.42 Gy) for α/β of 10 Gy. For the PTV, the average mean and maximum doses were 2% and 5% lower in VMAT plans than in IMRT plans, respectively. The average EUD and the normal tissue complication probability (NTCP) for the hippocampus in VMAT vs. IMRT plans were (15.28±1.35 Gy vs. 15.65±0.99 Gy, p=0.18) and (0.305±0.012 Gy vs. 0.308±0.008 Gy, p=0.192), respectively. The average EUD and NTCP for the optic chiasm were both 2% higher in VMAT than in IMRT plans. Conclusion: Though statistically insignificant, VMAT plans indicate a lower hippocampus EUD than IMRT plans. Also, a small variation in NTCP was found between plans.« less
  • Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
  • Purpose: To evaluate two dose optimization strategies for maintaining target volume coverage of inversely-planned post mastectomy radiotherapy (PMRT) plans during patient motion. Methods: Five patients previously treated with VMAT for PMRT at our clinical were randomly selected for this study. For each patient, two plan optimization strategies were compared. Plan 1 was optimized to a volume that included the physician’s planning target volume (PTV) plus an expansion up to 0.3 cm from the bolus surface. Plan 2 was optimized to the PTV plus an expansion up to 0.3 cm from the patient surface (i.e., not extending into the bolus). VMATmore » plans were optimized to deliver 95% of the prescription to 95% of the PTV while sparing organs at risk based on clinical dose limits. PTV coverage was then evaluated following the simulation of patient shifts by 1.0 cm in the anterior and posterior directions using the treatment planning system. Results: Posterior patient shifts produced a difference in D95% of around 11% in both planning approaches from the non-shifted dose distributions. Coverage of the medial and lateral borders of the evaluation volume was reduced in both the posteriorly shifted plans (Plan 1 and Plan 2). Anterior patient shifts affected Plan 2 more than Plan 1 with a difference in D95% of 1% for Plan 1 versus 6% for Plan 2 from the non-shifted dose distributions. The least variation in PTV dose homogeneity for both shifts was obtained with Plan 1. However, all posteriorly shifted plans failed to deliver 95% of the prescription to 95% of the PTV. Whereas, only a few anteriorly shifted plans failed this criteria. Conclusion: The results of this study suggest both planning volume methods are sensitive to patient motion, but that a PTV extended into a bolus volume is slightly more robust for anterior patient shifts.« less