skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans

Abstract

Purpose: The aim of the current study is to investigate the effect of machine output variation on the delivery of the RapidArc verification plans. Methods: Three verification plans were generated using Eclipse™ treatment planning system (V11.031) with plan normalization value 100.0%. These plans were delivered on the linear accelerators using ArcCHECK− device, with machine output 1.000 cGy/MU at calibration point. These planned and delivered dose distributions were used as reference plans. Additional plans were created in Eclipse− with normalization values ranging 92.80%–102% to mimic the machine output ranging 1.072cGy/MU-0.980cGy/MU, at the calibration point. These plans were compared against the reference plans using gamma indices (3%, 3mm) and (2%, 2mm). Calculated gammas were studied for its dependence on machine output. Plans were considered passed if 90% of the points satisfy the defined gamma criteria. Results: The gamma index (3%, 3mm) was insensitive to output fluctuation within the output tolerance level (2% of calibration), and showed failures, when the machine output exceeds ≥3%. Gamma (2%, 2mm) was found to be more sensitive to the output variation compared to the gamma (3%, 3mm), and showed failures, when output exceeds ≥1.7%. The variation of the gamma indices with output variability also showed dependence uponmore » the plan parameters (e.g. MLC movement and gantry rotation). The variation of the percentage points passing gamma criteria with output variation followed a non-linear decrease beyond the output tolerance level. Conclusion: Data from the limited plans and output conditions showed that gamma (2%, 2mm) is more sensitive to the output fluctuations compared to Gamma (3%,3mm). Work under progress, including detail data from a large number of plans and a wide range of output conditions, may be able to conclude the quantitative dependence of gammas on machine output, and hence the effect on the quality of delivered rapid arc plans.« less

Authors:
; ; ;  [1]
  1. Fraser Valley Cancer Centre, BC Cancer Agency, Surrey, British Columbia (Canada)
Publication Date:
OSTI Identifier:
22648896
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; CALIBRATION; LINEAR ACCELERATORS; NONLINEAR PROBLEMS; PLANNING; RADIATION DOSE DISTRIBUTIONS; VERIFICATION

Citation Formats

Sandhu, G, Cao, F, Szpala, S, and Kohli, K. SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans. United States: N. p., 2016. Web. doi:10.1118/1.4956424.
Sandhu, G, Cao, F, Szpala, S, & Kohli, K. SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans. United States. doi:10.1118/1.4956424.
Sandhu, G, Cao, F, Szpala, S, and Kohli, K. 2016. "SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans". United States. doi:10.1118/1.4956424.
@article{osti_22648896,
title = {SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans},
author = {Sandhu, G and Cao, F and Szpala, S and Kohli, K},
abstractNote = {Purpose: The aim of the current study is to investigate the effect of machine output variation on the delivery of the RapidArc verification plans. Methods: Three verification plans were generated using Eclipse™ treatment planning system (V11.031) with plan normalization value 100.0%. These plans were delivered on the linear accelerators using ArcCHECK− device, with machine output 1.000 cGy/MU at calibration point. These planned and delivered dose distributions were used as reference plans. Additional plans were created in Eclipse− with normalization values ranging 92.80%–102% to mimic the machine output ranging 1.072cGy/MU-0.980cGy/MU, at the calibration point. These plans were compared against the reference plans using gamma indices (3%, 3mm) and (2%, 2mm). Calculated gammas were studied for its dependence on machine output. Plans were considered passed if 90% of the points satisfy the defined gamma criteria. Results: The gamma index (3%, 3mm) was insensitive to output fluctuation within the output tolerance level (2% of calibration), and showed failures, when the machine output exceeds ≥3%. Gamma (2%, 2mm) was found to be more sensitive to the output variation compared to the gamma (3%, 3mm), and showed failures, when output exceeds ≥1.7%. The variation of the gamma indices with output variability also showed dependence upon the plan parameters (e.g. MLC movement and gantry rotation). The variation of the percentage points passing gamma criteria with output variation followed a non-linear decrease beyond the output tolerance level. Conclusion: Data from the limited plans and output conditions showed that gamma (2%, 2mm) is more sensitive to the output fluctuations compared to Gamma (3%,3mm). Work under progress, including detail data from a large number of plans and a wide range of output conditions, may be able to conclude the quantitative dependence of gammas on machine output, and hence the effect on the quality of delivered rapid arc plans.},
doi = {10.1118/1.4956424},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Fast and reliable comprehensive quality assurance tools are required to validate the safety and accuracy of complex intensity-modulated radiotherapy (IMRT) plans for prostate treatment. In this study, we evaluated the performance of the COMPASS system for both off-line and potential online procedures for the verification of IMRT treatment plans. Methods and Materials: COMPASS has a dedicated beam model and dose engine, it can reconstruct three-dimensional dose distributions on the patient anatomy based on measured fluences using either the MatriXX two-dimensional (2D) array (offline) or a 2D transmission detector (T2D) (online). For benchmarking the COMPASS dose calculation, various dose-volume indicesmore » were compared against Monte Carlo-calculated dose distributions for five prostate patient treatment plans. Gamma index evaluation and absolute point dose measurements were also performed in an inhomogeneous pelvis phantom using extended dose range films and ion chamber for five additional treatment plans. Results: MatriXX-based dose reconstruction showed excellent agreement with the ion chamber (<0.5%, except for one treatment plan, which showed 1.5%), film ({approx}100% pixels passing gamma criteria 3%/3 mm) and mean dose-volume indices (<2%). The T2D based dose reconstruction showed good agreement as well with ion chamber (<2%), film ({approx}99% pixels passing gamma criteria 3%/3 mm), and mean dose-volume indices (<5.5%). Conclusion: The COMPASS system qualifies for routine prostate IMRT pretreatment verification with the MatriXX detector and has the potential for on-line verification of treatment delivery using T2D.« less
  • Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18more » measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA.« less
  • Purpose: To report on the patient-specific quality assurance (PSQA) results for 295 spot-scanning proton therapy treatment plans from the MD Anderson PTC-Houston. We show how the results differed by treatment site and how they were affected by the treatment plan optimization method and by a range shifter in the treatment field. We also discuss some causes of PSQA problems. Methods: The PSQA procedure, which is designed to verify both the accuracy of the treatment planning system's (Eclipse™ v8.9) dose calculations and the dose delivery of the Hitachi PROBEAT synchrotron, consists of (1) an end-to-end test in which the beam ismore » delivered and measured at the prescribed gantry angle, and (2) additional dose plane measurements made from gantry angle 270°. HPlusQA™ software automatically performs the gamma analysis with criteria 3% (dose tolerance), 3 mm (distance-to-agreement, DTA) and 2%, 2 mm. Passing is defined as at least 90% of the pixels having a gamma score less than 1. Results: The PSQA gamma passing rate was 96.2% for 3%, 3 mm, and 85.3% for 2%, 2 mm. The rate depended on the treatment site. For example, the 3%, 3 mm passing rate was 95% for head and neck plans, vs 100% for prostate plans. The passing rates of multi- vs. single-field optimization plans did not significantly differ. However, the rate for fields with range shifters was 94.8±0.6%, vs 99.0±0.6% for those without (p = 0.002). Longitudinal dose gradients caused most of the low scores. Overestimation of the calculated dose proximal to the spread-out Bragg peak (SOBP) caused many of the others. Conclusion: The planned and delivered doses consistently agreed within tolerance levels. Minor dose modeling deficiencies remain proximal to the SOBP. The 3% dose tolerance, 3 mm DTA, with 90% pixel passing rate is a reasonable action level for 2D gamma comparisons.« less
  • Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters,more » such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.« less
  • Purpose: To evaluate the effectiveness of using the Portal Dosimetry (PD) method for patient specific quality assurance of prostate VMAT plans. Methods: As per institutional protocol all VMAT plans were measured using the Varian Portal Dosimetry (PD) method. A gamma evaluation criterion of 3%-3mm with a minimum area gamma pass rate (gamma <1) of 95% is used clinically for all plans. We retrospectively evaluated the portal dosimetry results for 170 prostate patients treated with VMAT technique. Three sets of criterions were adopted for re-evaluating the measurements; 3%-3mm, 2%-2mm and 1%-1mm. For all criterions two areas, Field+1cm and MLC-CIAO were analysed.Tomore » ascertain the effectiveness of the portal dosimetry technique in determining the delivery accuracy of prostate VMAT plans, 10 patients previously measured with portal dosimetry, were randomly selected and their measurements repeated using the ArcCHECK method. The same criterion used in the analysis of PD was used for the ArcCHECK measurements. Results: All patient plans reviewed met the institutional criteria for Area Gamma pass rate. Overall, the gamma pass rate (gamma <1) decreases for 3%-3mm, 2%-2mm and 1%-1mm criterion. For each criterion the pass rate was significantly reduced when the MLC-CIAO was used instead of FIELD+1cm. There was noticeable change in sensitivity for MLC-CIAO with 2%-2mm criteria and much more significant reduction at 1%-1mm. Comparable results were obtained for the ArcCHECK measurements. Although differences were observed between the clockwise verses the counter clockwise plans in both the PD and ArcCHECK measurements, this was not deemed to be statistically significant. Conclusion: This work demonstrates that Portal Dosimetry technique can be effectively used for quality assurance of VMAT plans. Results obtained show similar sensitivity compared to ArcCheck. To reveal certain delivery inaccuracies, the use of a combination of criterions may provide an effective way in improving the overall sensitivity of PD. Funding provided in part by the Prostate Ride for Dad, Kitchener-Waterloo, Canada.« less