skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

Abstract

Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration, at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QAmore » results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less

Authors:
; ;  [1]
  1. Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)
Publication Date:
OSTI Identifier:
22648885
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; CALIBRATION; DIFFERENTIAL THERMAL ANALYSIS; LINEAR ACCELERATORS; RADIOTHERAPY; RATS

Citation Formats

Mazza, A, Perrin, D, and Fontenot, J. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration. United States: N. p., 2016. Web. doi:10.1118/1.4956411.
Mazza, A, Perrin, D, & Fontenot, J. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration. United States. doi:10.1118/1.4956411.
Mazza, A, Perrin, D, and Fontenot, J. Wed . "SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration". United States. doi:10.1118/1.4956411.
@article{osti_22648885,
title = {SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration},
author = {Mazza, A and Perrin, D and Fontenot, J},
abstractNote = {Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration, at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.},
doi = {10.1118/1.4956411},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less
  • Purpose: In this study we will compare the ability of three QA methods (Delta4, MU-EPID, Dynalog QA) to detect specific errors. Methods: A Varian Novalis Tx with a HD120 MLC and aS1000 Electronic Portal Imaging Device (EPID) was used in our study. Multi-leaf collimator (MLC) errors, gantry angle and dose errors were introduced into 5 volumetric arc therapy (VMAT) plans. 3D dose distributions calculated with data from the EPID and Dynalog QA methods were compared with the planned dose distribution. The gamma passing percentages as well as percentage error of planning target volume (PTV) dose were used for passing determination.more » Baselines for gamma passing percentages and PTV dose were established by measuring the original plan 5 times consecutively. Standard passing thresholds as well as thresholds derived from receiver operator characteristic (ROC) analysis and 2 standard deviation (SD) criteria were used. Results: When applying the standard 95% pass rate at 3%/3mm gamma analysis 14, 21 and 8 of 30 errors were detected by the Delta4, MU-EPID and Dynalog QA methods respectively. Thresholds set at 2 SD from our base line measurements resulted in the detection of 18, 9 and 14 of 30 errors for the Delta4, MU-EPID and Dynalog QA methods respectively. When using D2 of the PTV as a metric the Dynalog QA detected 20 of 30 errors while the EPID method detected 14 of 30 errors. Using D98 of the PTV, Dynalog QA detected 13 of 30 while the EPID detected 3 of 30 errors. Conclusion: Although MU-EPID detected the most errors at the standard 95% cutoff it also produced the most false detections in the baseline data. The Dynalog QA was the most effective when the ROC adjusted passing threshold was used. D2 was more effective as a metric for detecting errors than D98.« less
  • Purpose: This study compares gamma passing rates for a cohort of similar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA) plans to determine the equivalence of the patient specific QA plan delivery. The passing criterion is 90% gamma index with 3% dose difference (DD), 3mm distance-to-agreement (DTA) and a dose threshold of 10%. Methods: Gamma passing results of previously treated IMRT QA plans, delivered to Sun Nuclear MapCheck phantom, and VMAT QA plans, delivered to ScandiDos Delta4 phantom, are organized by anatomical site and treatment machine. Both Varian and Elekta machines are included. Pairs ofmore » IMRT and VMAT plans are matched based on site, machine, and PTV volume to ensure similar plan cohorts. A two-tailed t-test analysis of the data with an alpha of 0.05 determines if there exists a statistically significant difference. Power was calculated to detect a difference of 4%; all data sets were strong with above a 0.8 power. Results: The first data set consisting of 20 matched pairs of prostate plans was statistically insignificant (p-value=0.90, Power=0.99). The 14 matched pairs set of head and neck plans has a statistically significant Result (p-value=0.028, Power=0.88). The head and neck IMRT gamma indexes have a mean of 93.1% and range of 82%-100% while the VMAT gamma indexes have a mean of 96.7% and range of 92%-100%. The two combined data sets of matched plans had a statistically insignificant Result (p-value=0.073, Power=0.99). Conclusion: Overall, IMRT and VMAT have equivalent passing rates when comparing the gamma analysis using a passing criterion of 3% DD and 3mm DTA. When separated by site, prostate IMRT and VMAT plans have equivalent passing rates while head and neck plans have a statistically significant variation of passing rates. The passing rates for the two modalities are independent of delivery machine for matched PTV target volumes.« less
  • Purpose: Performing pre-treatment quality assurance (QA) with the Delta4 system (ScandiDos Inc., Madison, WI) is well established for linac-based radiotherapy. This is not true when using a Cyberknife (Accuray Inc., Sunnyvale, CA) where, typically film-based QA is applied. The goal of this work was to test the feasibility to use the Delta4 system for pre-treatment QA for stereotactic body radiation therapy (SBRT) using a Cyberknife-M6 equipped with the InCise2 multileaf collimator (MLC). Methods: In order to perform measurements without accelerator pulse signal, the Tomotherapy option within the Delta4 software was used. Absolute calibration of the Delta4 phantom was performed usingmore » a 10×10 cm{sup 2} field shaped by the InCise2 MLC of the Cyberknife-M6. Five fiducials were attached to the Delta4 phantom in order to be able to track the phantom before and during measurements. For eight SBRT treatment plans (two liver, two prostate, one lung, three bone metastases) additional verification plans were recalculated on the Delta4 phantom using MultiPlan. Dicom data was exported from MultiPlan and was adapted in order to be compatible with the Delta4 software. The measured and calculated dose distributions were compared using the gamma analysis of the Delta4 system. Results: All eight SBRT plans were successfully measured with the aid of the Delta4 system. In the mean, 98.0±1.9%, 95.8±4.1% and 88.40±11.4% of measured dose points passed the gamma analysis using a global dose deviation criterion of 3% (100% corresponds to the dose maximum) and a distance-to-agreement criterion of 3 mm, 2 mm and 1 mm, respectively, and a threshold of 20%. Conclusion: Pre-treatment QA of SBRT plans using the Delta4 system on a Cyberknife-M6 is feasible. Measured dose distributions of SBRT plans showed clinically acceptable agreement with the corresponding calculated dose distributions.« less
  • Purpose: In recent years patient-specific IMRT QA has transitioned from film and chamber measurements to beam-by-beam 2D array measurements. 3DVH takes this transition a step further by estimating the 3D dose distribution delivered using 2D per beam diode array measurements. In this study, the 3D dose distribution generated by 3DVH is compared to film and chamber measurements. In addition, the accuracy ROI volume and error detection is investigated. Methods: Composite film and ion chamber measurements in a solid water phantom were performed for 9 IMRT PINNACLE patient plans for 4 treatment sites. The film and chamber measurements were compared tomore » the dose distribution predicted by 3DVH using MAPCHECK2 per beam measurements. The absolute point dose measurement (CAX) was extracted from the predicted 3DVH and PINNACLE dose distribution and was compared by taking the ratio of measured to predicted doses. The dose distribution measured with film was compared to the distribution in the corresponding plane (AX, SAG, COR) extracted from predicted dose distribution by 3DVH and PINNACLE using a 2D gamma analysis. Gamma analysis was performed with 2% dose, 2 mm DTA, 20% threshold, and global normalization. In addition, the percent difference between 3DVH and PINNACLE ROI volumes was calculated. Results: The average ratio of the measured point dose vs the 3DVH predicted dose was 1.017 (σ=0.011). The average gamma passing rate for measured vs 3DVH dose distributions was 95.1% (σ=2.53%). The average percent difference of 3DVH vs PINNACLE ROI volume was 2.29% (σ=2.5%). Conclusion: The dose distributions predicted by 3DVH using MAPCHECK2 measurements are the same as the distributions that would have been obtained using film and chamber. The ROI volumes used in 3DVH are not an exact match to those in PINNACLE; the effect requires more investigation. The accuracy of error detection by 3DVH is currently being investigated.« less