skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-252: An Investigation of Gamma Knife Frame Definition Error When Using a Pre-Planning Workflow

Abstract

Purpose: To determine causal factors related to high frame definition error when treating GK patients using a pre-planning workflow. Methods: 160 cases were retrospectively reviewed. All patients received treatment using a pre-planning workflow whereby stereotactic coordinates are determined from a CT scan acquired after framing using a fiducial box. The planning software automatically detects the fiducials and compares their location to expected values based on the rigid design of the fiducial system. Any difference is reported as mean and maximum frame definition error. The manufacturer recommends these values be less than 1.0 mm and 1.5 mm. In this study, frame definition error was analyzed in comparison with a variety of factors including which neurosurgeon/oncologist/physicist was involved with the procedure, number of post used during framing (3 or 4), type of lesion, and which CT scanner was utilized for acquisition. An analysis of variance (ANOVA) approach was used to statistically evaluate the data and determine causal factors related to instances of high frame definition error. Results: Two factors were identified as significant: number of post (p=0.0003) and CT scanner (p=0.0001). Further analysis showed that one of the four scanners was significantly different than the others. This diagnostic scanner was identified asmore » an older model with localization lasers not tightly calibrated. The average value for maximum frame definition error using this scanner was 1.48 mm (4 posts) and 1.75 mm (3 posts). For the other scanners this value was 1.13 mm (4 posts) and 1.40 mm (3 posts). Conclusion: In utilizing a pre-planning workflow the choice of CT scanner matters. Any scanner utilized for GK should undergo routine QA at a level appropriate for radiation oncology. In terms of 3 vs 4 post, it is hypothesized that three posts provide less stability during CT acquisition. This will be tested in future work.« less

Authors:
 [1]
  1. University of Miami, Miami, FL (United States)
Publication Date:
OSTI Identifier:
22648868
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTER CODES; ERRORS; MEDICAL PERSONNEL; RADIOTHERAPY; SURGERY

Citation Formats

Johnson, P. SU-F-T-252: An Investigation of Gamma Knife Frame Definition Error When Using a Pre-Planning Workflow. United States: N. p., 2016. Web. doi:10.1118/1.4956392.
Johnson, P. SU-F-T-252: An Investigation of Gamma Knife Frame Definition Error When Using a Pre-Planning Workflow. United States. doi:10.1118/1.4956392.
Johnson, P. 2016. "SU-F-T-252: An Investigation of Gamma Knife Frame Definition Error When Using a Pre-Planning Workflow". United States. doi:10.1118/1.4956392.
@article{osti_22648868,
title = {SU-F-T-252: An Investigation of Gamma Knife Frame Definition Error When Using a Pre-Planning Workflow},
author = {Johnson, P},
abstractNote = {Purpose: To determine causal factors related to high frame definition error when treating GK patients using a pre-planning workflow. Methods: 160 cases were retrospectively reviewed. All patients received treatment using a pre-planning workflow whereby stereotactic coordinates are determined from a CT scan acquired after framing using a fiducial box. The planning software automatically detects the fiducials and compares their location to expected values based on the rigid design of the fiducial system. Any difference is reported as mean and maximum frame definition error. The manufacturer recommends these values be less than 1.0 mm and 1.5 mm. In this study, frame definition error was analyzed in comparison with a variety of factors including which neurosurgeon/oncologist/physicist was involved with the procedure, number of post used during framing (3 or 4), type of lesion, and which CT scanner was utilized for acquisition. An analysis of variance (ANOVA) approach was used to statistically evaluate the data and determine causal factors related to instances of high frame definition error. Results: Two factors were identified as significant: number of post (p=0.0003) and CT scanner (p=0.0001). Further analysis showed that one of the four scanners was significantly different than the others. This diagnostic scanner was identified as an older model with localization lasers not tightly calibrated. The average value for maximum frame definition error using this scanner was 1.48 mm (4 posts) and 1.75 mm (3 posts). For the other scanners this value was 1.13 mm (4 posts) and 1.40 mm (3 posts). Conclusion: In utilizing a pre-planning workflow the choice of CT scanner matters. Any scanner utilized for GK should undergo routine QA at a level appropriate for radiation oncology. In terms of 3 vs 4 post, it is hypothesized that three posts provide less stability during CT acquisition. This will be tested in future work.},
doi = {10.1118/1.4956392},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less
  • Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
  • Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. Amore » treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.« less
  • Purpose: Treatment-planning systems rely on computer intensive optimization algorithms in order to provide radiation dose localization. We are investigating a new optimization paradigm based on natural physical modeling and simulations, which tend to evolve in time and find the minimum energy state. In our research, we aim to match physical models with radiation therapy inverse planning problems, where the minimum energy state coincides with the optimal solution. As a prototype study, we have modeled the inverse planning of Gamma Knife radiosurgery using the dynamic interactions between charged particles and demonstrate the potential of the paradigm. Methods: For inverse planning ofmore » Gamma Knife radiosurgery: (1) positive charges are uniformly placed on the surface of tumors and critical structures. (2) The Gamma Knife dose kernels of 4mm, 8mm and 16mm radii are modeled as geometric objects with variable charges. (3) The number of shots per each kernel radii is obtained by solving a constrained integer-linear problem. (4) The shots are placed into the tumor volume and move under electrostatic forces. The simulation is performed until internal forces are zero or maximum iterations are reached. (5) Finally, non-negative least squares (NNLS) is used to calculate the beam-on times for each shot. Results: A 3D C-shaped tumor surrounding a spherical critical structure was used for testing the new optimization paradigm. These tests showed that charges spread out evenly covering the tumor while keeping distance from the critical structure, resulting in a high quality plan. Conclusion: We have developed a new paradigm for dose optimization based on the simulation of physical models. As prototype studies, we applied electrostatic models to Gamma Knife radiosurgery and demonstrated the potential of the new paradigm. Further research and fine-tuning of the model are underway. NSF CBET-0853157.« less
  • Purpose: To evaluate the geometric positioning and immobilization performance of a vacuum bite-block repositioning head frame (RHF) system for Perfexion (PFX-SRT) and linac-based intracranial image-guided stereotactic radiotherapy (SRT). Methods and Materials: Patients with intracranial tumors received linac-based image-guided SRT using the RHF for setup and immobilization. Three hundred thirty-three fractions of radiation were delivered in 12 patients. The accuracy of the RHF was estimated for linac-based SRT with online cone-beam CT (CBCT) and for PFX-SRT with a repositioning check tool (RCT) and offline CBCT. The RCT's ability to act as a surrogate for anatomic position was estimated through comparison tomore » CBCT image matching. Immobilization performance was evaluated daily with pre- and postdose delivery CBCT scans and RCT measurements. Results: The correlation coefficient between RCT- and CBCT-reported displacements was 0.59, 0.75, 0.79 (Right, Superior, and Anterior, respectively). For image-guided linac-based SRT, the mean three-dimensional (3D) setup error was 0.8 mm with interpatient ({Sigma}) and interfraction ({sigma}) variations of 0.1 and 0.4 mm, respectively. For PFX-SRT, the initial, uncorrected mean 3D positioning displacement in stereotactic coordinates was 2.0 mm, with {Sigma} = 1.1 mm and {sigma} = 0.8 mm. Considering only RCT setups <1mm (PFX action level) the mean 3D positioning displacement reduced to 1.3 mm, with {Sigma} = 0.9 mm and {sigma} = 0.4 mm. The largest contributing systematic uncertainty was in the superior-inferior direction (mean displacement = -0.5 mm; {Sigma} = 0.9 mm). The largest mean rotation was 0.6{sup o} in pitch. The mean 3D intrafraction motion was 0.4 {+-} 0.3 mm. Conclusion: The RHF provides excellent immobilization for intracranial SRT and PFX-SRT. Some small systematic uncertainties in stereotactic positioning exist and must be considered when generating PFX-SRT treatment plans. The RCT provides reasonable surrogacy for internal anatomic displacement.« less