skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files

Abstract

Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16 fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gammamore » for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.« less

Authors:
; ; ; ;  [1]
  1. University of Texas HSC SA, San Antonio, TX (United States)
Publication Date:
OSTI Identifier:
22648849
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 62 RADIOLOGY AND NUCLEAR MEDICINE; ERRORS; EVALUATION; LINEAR ACCELERATORS; PARTICLE TRACKS; PATIENTS; QUALITY ASSURANCE

Citation Formats

Kabat, C, Defoor, D, Alexandrian, A, Papanikolaou, N, and Stathakis, S. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files. United States: N. p., 2016. Web. doi:10.1118/1.4956372.
Kabat, C, Defoor, D, Alexandrian, A, Papanikolaou, N, & Stathakis, S. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files. United States. doi:10.1118/1.4956372.
Kabat, C, Defoor, D, Alexandrian, A, Papanikolaou, N, and Stathakis, S. 2016. "SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files". United States. doi:10.1118/1.4956372.
@article{osti_22648849,
title = {SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files},
author = {Kabat, C and Defoor, D and Alexandrian, A and Papanikolaou, N and Stathakis, S},
abstractNote = {Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16 fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.},
doi = {10.1118/1.4956372},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for bothmore » free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.« less
  • Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less
  • Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a conventional Elekta linear accelerator. MV-scatter suppression is needed to improve tracking accuracy during MV delivery. This research is funded by Motion Management Research Grant from Elekta.« less
  • Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
  • Purpose: This research investigates the use of Mult-ileaf Collimator (MLC) dynalog files to modify a Volumetric Arc Therapy (VMAT) DICOM Radiotherapy Treatment file from the Treatment Planning System (TPS) for quality assurance and treatment plan verification. Methods: Actual MLC positions and gantry angles where retrieved from the MLC Dynalog files of an approved and treated VMAT plan. The treatment machine used was a Novalis TX linac equipped with high definition MLC. The DICOM RT file of the plan was exported from the TPS (Eclipse, Varian Medical Systems) and the actual MLC leaf positions and gantry angles were inserted in placemore » of the planned positions for each control point. The modified DICOM RT file was then imported back into the TPS where dose calculations were performed. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3mm-3% and 2mm-2% criteria. A 2D gamma was also calculated using dose measurements on the Delta4 (Sandidose) phantom. Results: A 3D gamma was calculated in Verisoft at 3mm-3% of 99.5% and at 2mm-2% of 99.2%. The pretreatment verification on the Delta4 yielded a 2D gamma at 3mm-3% of 97.9% and at 2mm-2% of 88.5%. The dose volume histograms of the approved plan and the dynalog plan are virtually identical. Conclusion: Initial results show good agreement of the dynalog dose distribution with the approved plan. Future work on this research will aim to increase the number of patients and replace the planned fractionated dose per control point with the actual fractionated dose.« less