skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-210: The Variable Virtual Source-To-Axis Distance Effect On A Compact Proton Pencil Beam Scanning System

Abstract

Purpose: We investigate the spot characteristic and dose profiles properties from a compact gantry proton therapy system. This compact design features a dedicated pencil beam scanning nozzle with the scanning magnet located upstream of the final 60 degree bending magnet. Due to the unique beam line design, uncertainty has been raised in the virtual source-to-axis distance (SAD). We investigate its potential clinical impact through measurements and simulation. Methods: A scintillator camera based detector was used to measure spot characteristics and position accuracy. An ion chamber array device was used to measure planar dose profile. Dose profile in-air simulation was performed using in-house built MATLAB program based on additional spot parameters directly from measurements. Spot characteristics such as position and in-air sigma values were used to general simulated 2D elliptical Gaussian spots. The virtual SAD distance changes in the longitudinal direction were also simulated. Planar dose profiles were generated by summation of simulated spots at the isocenter, 15 cm above the isocenter, and 15 cm below the isocenter for evaluation of potential clinical dosimetric impact. Results: We found that the virtual SAD varies depending on the spot location on the longitudinal axis. Measurements have shown that the variable SAD changes frommore » 7 to 12 meters from one end to the other end of the treatment field in the longitudinal direction. The simulation shows that the planer dose profiles differences between the fixed SAD and variable SAD are within 3% from the isocenter profile and the lateral penumbras are within 1 mm difference. Conclusion: Our measurements and simulations show that there are minimum effects on the spot characteristics and dose profiles for this up-stream scanning compact system proton system. Further treatment planning study is needed with the variable virtual SAD accounted for in the planning system to show minimum dosimetric impact.« less

Authors:
; ;  [1]
  1. Beaumont Health System, Royal Oak, MI (United States)
Publication Date:
OSTI Identifier:
22648827
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; IONIZATION CHAMBERS; PLANNING; PROTON BEAMS; RADIATION DOSES; RADIOTHERAPY; SIMULATION

Citation Formats

Zhang, J, Li, X, and Ding, X. SU-F-T-210: The Variable Virtual Source-To-Axis Distance Effect On A Compact Proton Pencil Beam Scanning System. United States: N. p., 2016. Web. doi:10.1118/1.4956348.
Zhang, J, Li, X, & Ding, X. SU-F-T-210: The Variable Virtual Source-To-Axis Distance Effect On A Compact Proton Pencil Beam Scanning System. United States. doi:10.1118/1.4956348.
Zhang, J, Li, X, and Ding, X. 2016. "SU-F-T-210: The Variable Virtual Source-To-Axis Distance Effect On A Compact Proton Pencil Beam Scanning System". United States. doi:10.1118/1.4956348.
@article{osti_22648827,
title = {SU-F-T-210: The Variable Virtual Source-To-Axis Distance Effect On A Compact Proton Pencil Beam Scanning System},
author = {Zhang, J and Li, X and Ding, X},
abstractNote = {Purpose: We investigate the spot characteristic and dose profiles properties from a compact gantry proton therapy system. This compact design features a dedicated pencil beam scanning nozzle with the scanning magnet located upstream of the final 60 degree bending magnet. Due to the unique beam line design, uncertainty has been raised in the virtual source-to-axis distance (SAD). We investigate its potential clinical impact through measurements and simulation. Methods: A scintillator camera based detector was used to measure spot characteristics and position accuracy. An ion chamber array device was used to measure planar dose profile. Dose profile in-air simulation was performed using in-house built MATLAB program based on additional spot parameters directly from measurements. Spot characteristics such as position and in-air sigma values were used to general simulated 2D elliptical Gaussian spots. The virtual SAD distance changes in the longitudinal direction were also simulated. Planar dose profiles were generated by summation of simulated spots at the isocenter, 15 cm above the isocenter, and 15 cm below the isocenter for evaluation of potential clinical dosimetric impact. Results: We found that the virtual SAD varies depending on the spot location on the longitudinal axis. Measurements have shown that the variable SAD changes from 7 to 12 meters from one end to the other end of the treatment field in the longitudinal direction. The simulation shows that the planer dose profiles differences between the fixed SAD and variable SAD are within 3% from the isocenter profile and the lateral penumbras are within 1 mm difference. Conclusion: Our measurements and simulations show that there are minimum effects on the spot characteristics and dose profiles for this up-stream scanning compact system proton system. Further treatment planning study is needed with the variable virtual SAD accounted for in the planning system to show minimum dosimetric impact.},
doi = {10.1118/1.4956348},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To evaluate the accuracy and limitations of a commercially-available treatment planning system’s (TPS’s) dose calculation algorithm for proton pencil-beam scanning (PBS) and present a novel technique to efficiently derive a clinically-acceptable beam model. Methods: In-air fluence profiles of PBS spots were modeled in the TPS alternately as single-(SG) and double-Gaussian (DG) functions, based on fits to commissioning data. Uniform-fluence, single-energy-layer square fields of various sizes and energies were calculated with both beam models and delivered to water. Dose was measured at several depths. Motivated by observed discrepancies in measured-versus-calculated dose comparisons, a third model was constructed based on double-Gaussianmore » parameters contrived through a novel technique developed to minimize these differences (DGC). Eleven cuboid-dose-distribution-shaped fields with varying range/modulation and field size were subsequently generated in the TPS, using each of the three beam models described, and delivered to water. Dose was measured at the middle of each spread-out Bragg peak. Results: For energies <160 MeV, the DG model fit square-field measurements to <2% at all depths, while the SG model could disagree by >6%. For energies >160 MeV, both SG and DG models fit square-field measurements to <1% at <4 cm depth, but could exceed 6% deeper. By comparison, disagreement with the DGC model was always <3%. For the cuboid plans, calculation-versus-measured percent dose differences exceeded 7% for the SG model, being larger for smaller fields. The DG model showed <3% disagreement for all field sizes in shorter-range beams, although >5% differences for smaller fields persisted in longer-range beams. In contrast, the DGC model predicted measurements to <2% for all beams. Conclusion: Neither the TPS’s SG nor DG models, employed as intended, are ideally suited for routine clinical use. However, via a novel technique to be presented, its DG model can be tuned judiciously to yield acceptable results.« less
  • Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting frommore » the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.« less
  • Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam deliveringmore » sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D{sub 99} (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D{sub 99} was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a clinically acceptable level. One-field-per-day SFUD delivered twice is as robust as the bilateral SFUD plan treated daily over the course of treatment.« less
  • Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. Anmore » in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie Grant from F.R.S.-FNRS. Liyong Lin is partially supported by Varian.« less
  • Purpose: To illustrate patient QA results for the first 10 patients treated at Scripps Proton Center by comparing point dose measurement using an ion chamber and in-house developed secondary MU program, and the measurement of 2D dose distribution using an ion chamber array. Methods: At the time of writing, 10 patient plans were approved for treatment using Varian ProBeam pencil beam scanning system and Eclipse treatment planning software. We used the IBA CC04 0.04 cm3 ion chamber and PTW Unidos E electrometer for point dose measurement in a small water tank (Sun Nuclear 1D scanner). We developed independent MU checkmore » software based on measured pencil beam dose profiles for various energies. We used PTW Octavius 729 XDR array to evaluate 2D planar dose distribution. The 3D gamma at 3%/3 mm local dose was used to compare a 3D calculated dose plan with a 2D measured dose distribution using PTW Verisoft software. All fields were exported to a verification phantom plan and delivered at 0 degrees for simplicity. Results: Comparisons between the CC04 ion chamber measurement and calculated dose agree well within 1%. The PTW Octavius 729 XDR array exhibited some dose rate dependence in high dose rate pencil beam delivery. Nevertheless, the results, used as a relative measurement, passed the gamma criteria of 3%/3mm for greater than 90% of area in all patient fields. Visual inspection showed good agreement between ion chamber dose profile and the calculated plan. The in-house secondary check for MU agreed very well with the plan dose and measurement. The results will be updated with more patients treated. Conclusion: The initial patient specific QA results are encouraging for a new pencil beam scanning only proton therapy system.« less