skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams

Abstract

Purpose: One potential technique to realize proton arc is through using PBS beams from many directions to form overlaid Bragg peak (OBP) spots and placing these OBP spots throughout the target volume to achieve desired dose distribution. In this study, we analyzed the robustness of this proton arc technique. Methods: We used a cylindrical water phantom of 20 cm in radius in our robustness analysis. To study the range uncertainty effect, we changed the density of the phantom by ±3%. To study the setup uncertainty effect, we shifted the phantom by 3 & 5 mm. We also combined the range and setup uncertainties (3mm/±3%). For each test plan, we performed dose calculation for the nominal and 6 disturbed scenarios. Two test plans were used, one with single OBP spot and the other consisting of 121 OBP spots covering a 10×10cm{sup 2} area. We compared the dose profiles between the nominal and disturbed scenarios to estimate the impact of the uncertainties. Dose calculation was performed with Gate/GEANT based Monte Carlo software in cloud computing environment. Results: For each of the 7 scenarios, we simulated 100k & 10M events for plans consisting of single OBP spot and 121 OBP spots respectively. Formore » single OBP spot, the setup uncertainty had minimum impact on the spot’s dose profile while range uncertainty had significant impact on the dose profile. For plan consisting of 121 OBP spots, similar effect was observed but the extent of disturbance was much less compared to single OBP spot. Conclusion: For PBS arc technique, range uncertainty has significantly more impact than setup uncertainty. Although single OBP spot can be severely disturbed by the range uncertainty, the overall effect is much less when a large number of OBP spots are used. Robustness optimization for PBS arc technique should consider range uncertainty with priority.« less

Authors:
 [1];  [2]
  1. Reading Hospital, West Reading, PA (United States)
  2. Procure Proton Therapy Center, Oklahoma City, OK (United States)
Publication Date:
OSTI Identifier:
22648802
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BEAMS; COMPUTER CODES; MONTE CARLO METHOD; PHANTOMS; RADIATION DOSE DISTRIBUTIONS

Citation Formats

Wang, Z, and Zheng, Y. SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams. United States: N. p., 2016. Web. doi:10.1118/1.4956322.
Wang, Z, & Zheng, Y. SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams. United States. doi:10.1118/1.4956322.
Wang, Z, and Zheng, Y. Wed . "SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams". United States. doi:10.1118/1.4956322.
@article{osti_22648802,
title = {SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams},
author = {Wang, Z and Zheng, Y},
abstractNote = {Purpose: One potential technique to realize proton arc is through using PBS beams from many directions to form overlaid Bragg peak (OBP) spots and placing these OBP spots throughout the target volume to achieve desired dose distribution. In this study, we analyzed the robustness of this proton arc technique. Methods: We used a cylindrical water phantom of 20 cm in radius in our robustness analysis. To study the range uncertainty effect, we changed the density of the phantom by ±3%. To study the setup uncertainty effect, we shifted the phantom by 3 & 5 mm. We also combined the range and setup uncertainties (3mm/±3%). For each test plan, we performed dose calculation for the nominal and 6 disturbed scenarios. Two test plans were used, one with single OBP spot and the other consisting of 121 OBP spots covering a 10×10cm{sup 2} area. We compared the dose profiles between the nominal and disturbed scenarios to estimate the impact of the uncertainties. Dose calculation was performed with Gate/GEANT based Monte Carlo software in cloud computing environment. Results: For each of the 7 scenarios, we simulated 100k & 10M events for plans consisting of single OBP spot and 121 OBP spots respectively. For single OBP spot, the setup uncertainty had minimum impact on the spot’s dose profile while range uncertainty had significant impact on the dose profile. For plan consisting of 121 OBP spots, similar effect was observed but the extent of disturbance was much less compared to single OBP spot. Conclusion: For PBS arc technique, range uncertainty has significantly more impact than setup uncertainty. Although single OBP spot can be severely disturbed by the range uncertainty, the overall effect is much less when a large number of OBP spots are used. Robustness optimization for PBS arc technique should consider range uncertainty with priority.},
doi = {10.1118/1.4956322},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}