skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

Abstract

Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval wasmore » 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.« less

Authors:
 [1];  [2]; ;  [3]; ;  [1];  [3];  [2]; ;  [3]
  1. Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia (United States)
  2. Division of Translation Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia (United States)
  3. Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States)
Publication Date:
OSTI Identifier:
22648779
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 96; Journal Issue: 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRACHYTHERAPY; CLINICAL TRIALS; COMPUTERIZED TOMOGRAPHY; CONSUMER PRODUCTS; CT-GUIDED RADIOTHERAPY; DOSE RATES; DOSIMETRY; GY RANGE 10-100; IMAGES; MAMMARY GLANDS; NEOPLASMS; PATIENTS; RADIATION DOSES; STANDARD OF LIVING; TOXICITY

Citation Formats

Showalter, Shayna L., E-mail: snl2t@virginia.edu, Petroni, Gina, Trifiletti, Daniel M., Libby, Bruce, Schroen, Anneke T., Brenin, David R., Dalal, Parchayi, Smolkin, Mark, Reardon, Kelli A., and Showalter, Timothy N.. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial. United States: N. p., 2016. Web. doi:10.1016/J.IJROBP.2016.04.035.
Showalter, Shayna L., E-mail: snl2t@virginia.edu, Petroni, Gina, Trifiletti, Daniel M., Libby, Bruce, Schroen, Anneke T., Brenin, David R., Dalal, Parchayi, Smolkin, Mark, Reardon, Kelli A., & Showalter, Timothy N.. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial. United States. doi:10.1016/J.IJROBP.2016.04.035.
Showalter, Shayna L., E-mail: snl2t@virginia.edu, Petroni, Gina, Trifiletti, Daniel M., Libby, Bruce, Schroen, Anneke T., Brenin, David R., Dalal, Parchayi, Smolkin, Mark, Reardon, Kelli A., and Showalter, Timothy N.. Thu . "A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial". United States. doi:10.1016/J.IJROBP.2016.04.035.
@article{osti_22648779,
title = {A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial},
author = {Showalter, Shayna L., E-mail: snl2t@virginia.edu and Petroni, Gina and Trifiletti, Daniel M. and Libby, Bruce and Schroen, Anneke T. and Brenin, David R. and Dalal, Parchayi and Smolkin, Mark and Reardon, Kelli A. and Showalter, Timothy N.},
abstractNote = {Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.},
doi = {10.1016/J.IJROBP.2016.04.035},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 96,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}
  • Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planningmore » target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.« less
  • To improve results for locally advanced prostate cancer, a prospective clinical trial of concurrent external beam irradiation and fractionated iridium-192 (IR-192) high dose rate (HDR) conformal boost brachytherapy was initiated. This technique of concurrent external pelvic irradiation and conformal HDR brachytherapy was well tolerated. No significant intraoperative or perioperative complications occurred. Three patients (9%) experienced Grade 3 acute toxicity (two dysuria and one diarrhea). All toxicities were otherwise Grades 1 or 2 and were primarily as expected from pelvic external irradiation. Persistent implant-related toxicities included Grades 1-2 perineal pain (12%) and hematospermia (15%). Median follow-up time was 13 months. Serummore » prostatic-specific antigen (PSA) levels normalized in 91% of patients (29 out of 32) within 1-14 months (median 2.8 months) after irradiation. PSA levels were progressively decreasing in the other three patients at last measurement. Prospectively planned prostatic rebiopsies done at 18 months in the first 10 patients were negative in 9 out of 10 (90%). Acute toxicity has been acceptable with this unique approach using conformal high dose rate IR-192 boost brachytherapy with concurrent external irradiation. The initial tumor response as assessed by serial PSA measurement and rebiopsy is extremely encouraging. Dose escalation will proceed in accordance with the protocol guidelines. Further patient accrual and longer follow-up will allow comparison to other techniques. 58 refs., 5 figs., 4 tabs.« less
  • Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, versionmore » 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.« less
  • Purpose: To prospectively evaluate cosmetic outcomes in women treated with accelerated partial breast irradiation using high-dose-rate interstitial brachytherapy for early-stage breast cancer. Methods and Materials: Between 2004 and 2008, 151 patients with early-stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients had stage Tis-T2 tumors of ≤3 cm that were excised with negative margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. Both the patients and the treating radiation oncologist qualitatively rated cosmesis as excellent, good, fair, or poor over time and ascribed a causemore » for changes in cosmesis. Cosmetic outcome was evaluated quantitatively by percentage of breast retraction assessment (pBRA). Patients also reported their satisfaction with treatment over time. Results: Median follow-up was 55 months. The rates of excellent-to-good cosmesis reported by patients and the treating radiation oncologist were 92% and 97% pretreatment, 91% and 97% at 3 to 4 months' follow-up, 87% and 94% at 2 years, and 92% and 94% at 3 years, respectively. Breast infection and adjuvant chemotherapy were independent predictors of a fair-to-poor cosmetic outcome at 3 years. Compared to pretreatment pBRA (7.35), there was no significant change in pBRA over time. The volume receiving more than 150 Gy (V150) was the only significant predictor of pBRA. The majority of patients (86.6%) were completely satisfied with their treatment. Conclusions: Patients and the treating physician reported a high rate of excellent-to-good cosmetic outcomes at all follow-up time points. Acute breast infection and chemotherapy were associated with worse cosmetic outcomes. Multicatheter interstitial brachytherapy does not significantly change breast size as measured by pBRA.« less
  • Purpose: To evaluate the tolerability of a dose-escalated 5-fraction stereotactic body radiation therapy for partial-breast irradiation (S-PBI) in treating early-stage breast cancer after partial mastectomy; the primary objective was to escalate dose utilizing a robotic stereotactic radiation system treating the lumpectomy cavity without exceeding the maximum tolerated dose. Methods and Materials: Eligible patients included those with ductal carcinoma in situ or invasive nonlobular epithelial histologies and stage 0, I, or II, with tumor size <3 cm. Patients and physicians completed baseline and subsequent cosmesis outcome questionnaires. Starting dose was 30 Gy in 5 fractions and was escalated by 2.5 Gy total for each cohortmore » to 40 Gy. Results: In all, 75 patients were enrolled, with a median age of 62 years. Median follow-up for 5 cohorts was 49.9, 42.5, 25.7, 20.3, and 13.5 months, respectively. Only 3 grade 3 toxicities were experienced. There was 1 dose-limiting toxicity in the overall cohort. Ten patients experienced palpable fat necrosis (4 of which were symptomatic). Physicians scored cosmesis as excellent or good in 95.9%, 100%, 96.7%, and 100% at baseline and 6, 12, and 24 months after S-PBI, whereas patients scored the same periods as 86.5%, 97.1%, 95.1%, and 95.3%, respectively. The disagreement rates between MDs and patients during those periods were 9.4%, 2.9%, 1.6%, and 4.7%, respectively. There have been no recurrences or distant metastases. Conclusion: Dose was escalated to the target dose of 40 Gy in 5 fractions, with the occurrence of only 1 dose-limiting toxicity. Patients felt cosmetic results improved within the first year after surgery and stereotactic body radiation therapy. Our results show minimal toxicity with excellent cosmesis; however, further follow-up is warranted in future studies. This study is the first to show the safety, tolerability, feasibility, and cosmesis results of a 5-fraction dose-escalated S-PBI treatment for early-stage breast cancer in the adjuvant setting.« less