skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy

Abstract

Purpose/Objectives: Evidence from the management of oligometastases with stereotactic body radiation therapy (SBRT) reveals differences in outcomes based on primary histology. We have previously identified a multigene expression index for tumor radiosensitivity (RSI) with validation in multiple independent cohorts. In this study, we assessed RSI in liver metastases and assessed our clinical outcomes after SBRT based on primary histology. Methods and Materials: Patients were identified from our prospective, observational protocol. The previously tested RSI 10 gene assay was run on samples and calculated using the published algorithm. An independent cohort of 33 patients with 38 liver metastases treated with SBRT was used for clinical correlation. Results: A total of 372 unique metastatic liver lesions were identified for inclusion from our prospective, institutional metadata pool. The most common primary histologies for liver metastases were colorectal adenocarcinoma (n=314, 84.4%), breast adenocarcinoma (n=12, 3.2%), and pancreas neuroendocrine (n=11, 3%). There were significant differences in RSI of liver metastases based on histology. The median RSIs for liver metastases in descending order of radioresistance were gastrointestinal stromal tumor (0.57), melanoma (0.53), colorectal neuroendocrine (0.46), pancreas neuroendocrine (0.44), colorectal adenocarcinoma (0.43), breast adenocarcinoma (0.35), lung adenocarcinoma (0.31), pancreas adenocarcinoma (0.27), anal squamous cell cancer (0.22), andmore » small intestine neuroendocrine (0.21) (P<.0001). The 12-month and 24-month Kaplan-Meier rates of local control (LC) for colorectal lesions from the independent clinical cohort were 79% and 59%, compared with 100% for noncolorectal lesions (P=.019), respectively. Conclusions: In this analysis, we found significant differences based on primary histology. This study suggests that primary histology may be an important factor to consider in SBRT radiation dose selection.« less

Authors:
;  [1];  [2]; ;  [3];  [4]; ; ; ;  [1];  [3];  [1]
  1. Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States)
  2. Department of Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States)
  3. Department of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States)
  4. Department of Biostastistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States)
Publication Date:
OSTI Identifier:
22648758
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 95; Journal Issue: 5; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; HISTOLOGY; LIVER; MAMMARY GLANDS; NEOPLASMS; PANCREAS; RADIATION DOSES; RADIOSENSITIVITY; RADIOTHERAPY

Citation Formats

Ahmed, Kamran A., Caudell, Jimmy J., El-Haddad, Ghassan, Berglund, Anders E., Welsh, Eric A., Yue, Binglin, Hoffe, Sarah E., Naghavi, Arash O., Abuodeh, Yazan A., Frakes, Jessica M., Eschrich, Steven A., and Torres-Roca, Javier F., E-mail: Javier.torresroca@moffitt.org. Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy. United States: N. p., 2016. Web. doi:10.1016/J.IJROBP.2016.03.050.
Ahmed, Kamran A., Caudell, Jimmy J., El-Haddad, Ghassan, Berglund, Anders E., Welsh, Eric A., Yue, Binglin, Hoffe, Sarah E., Naghavi, Arash O., Abuodeh, Yazan A., Frakes, Jessica M., Eschrich, Steven A., & Torres-Roca, Javier F., E-mail: Javier.torresroca@moffitt.org. Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy. United States. doi:10.1016/J.IJROBP.2016.03.050.
Ahmed, Kamran A., Caudell, Jimmy J., El-Haddad, Ghassan, Berglund, Anders E., Welsh, Eric A., Yue, Binglin, Hoffe, Sarah E., Naghavi, Arash O., Abuodeh, Yazan A., Frakes, Jessica M., Eschrich, Steven A., and Torres-Roca, Javier F., E-mail: Javier.torresroca@moffitt.org. 2016. "Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy". United States. doi:10.1016/J.IJROBP.2016.03.050.
@article{osti_22648758,
title = {Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy},
author = {Ahmed, Kamran A. and Caudell, Jimmy J. and El-Haddad, Ghassan and Berglund, Anders E. and Welsh, Eric A. and Yue, Binglin and Hoffe, Sarah E. and Naghavi, Arash O. and Abuodeh, Yazan A. and Frakes, Jessica M. and Eschrich, Steven A. and Torres-Roca, Javier F., E-mail: Javier.torresroca@moffitt.org},
abstractNote = {Purpose/Objectives: Evidence from the management of oligometastases with stereotactic body radiation therapy (SBRT) reveals differences in outcomes based on primary histology. We have previously identified a multigene expression index for tumor radiosensitivity (RSI) with validation in multiple independent cohorts. In this study, we assessed RSI in liver metastases and assessed our clinical outcomes after SBRT based on primary histology. Methods and Materials: Patients were identified from our prospective, observational protocol. The previously tested RSI 10 gene assay was run on samples and calculated using the published algorithm. An independent cohort of 33 patients with 38 liver metastases treated with SBRT was used for clinical correlation. Results: A total of 372 unique metastatic liver lesions were identified for inclusion from our prospective, institutional metadata pool. The most common primary histologies for liver metastases were colorectal adenocarcinoma (n=314, 84.4%), breast adenocarcinoma (n=12, 3.2%), and pancreas neuroendocrine (n=11, 3%). There were significant differences in RSI of liver metastases based on histology. The median RSIs for liver metastases in descending order of radioresistance were gastrointestinal stromal tumor (0.57), melanoma (0.53), colorectal neuroendocrine (0.46), pancreas neuroendocrine (0.44), colorectal adenocarcinoma (0.43), breast adenocarcinoma (0.35), lung adenocarcinoma (0.31), pancreas adenocarcinoma (0.27), anal squamous cell cancer (0.22), and small intestine neuroendocrine (0.21) (P<.0001). The 12-month and 24-month Kaplan-Meier rates of local control (LC) for colorectal lesions from the independent clinical cohort were 79% and 59%, compared with 100% for noncolorectal lesions (P=.019), respectively. Conclusions: In this analysis, we found significant differences based on primary histology. This study suggests that primary histology may be an important factor to consider in SBRT radiation dose selection.},
doi = {10.1016/J.IJROBP.2016.03.050},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 5,
volume = 95,
place = {United States},
year = 2016,
month = 8
}
  • Purpose: This study aimed to evaluate the prognostic significance of the modified Glasgow Prognostic Score (mGPS) in patients with non-small cell lung cancer (NSCLC) who received stereotactic body radiation therapy (SBRT). Methods and Materials: Data from 165 patients who underwent SBRT for stage I NSCLC with histologic confirmation from January 1999 to September 2010 were collected retrospectively. Factors, including age, performance status, histology, Charlson comorbidity index, mGPS, and recursive partitioning analysis (RPA) class based on sex and T stage, were evaluated with regard to overall survival (OS) using the Cox proportional hazards model. The impact of the mGPS on causemore » of death and failure patterns was also analyzed. Results: The 3-year OS was 57.9%, with a median follow-up time of 3.5 years. A higher mGPS correlated significantly with poor OS (P<.001). The 3-year OS of lower mGPS patients was 66.4%, whereas that of higher mGPS patients was 44.5%. On multivariate analysis, mGPS and RPA class were significant factors for OS. A higher mGPS correlated significantly with lung cancer death (P=.019) and distant metastasis (P=.013). Conclusions: The mGPS was a significant predictor of clinical outcomes for SBRT in NSCLC patients.« less
  • Purpose: Stereotactic body radiation therapy (SBRT) provides a high local control rate for primary and metastatic liver tumors. The aim of this study is to assess the impact of this treatment on the patient's quality of life. This is the first report of quality of life associated with liver SBRT. Methods and Materials: From October 2002 to March 2007, a total of 28 patients not suitable for other local treatments and with Karnofsky performance status of at least 80% were entered in a Phase I-II study of SBRT for liver tumors. Quality of life was a secondary end point. Twomore » generic quality of life instruments were investigated, EuroQol-5D (EQ-5D) and EuroQoL-Visual Analogue Scale (EQ-5D VAS), in addition to a disease-specific questionnaire, the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ C-30). Points of measurement were directly before and 1, 3, and 6 months after treatment. Mean scores and SDs were calculated. Statistical analysis was performed using paired-samples t-test and Student t-test. Results: The calculated EQ-5D index, EQ-5D VAS and QLQ C-30 global health status showed that mean quality of life of the patient group was not significantly influenced by treatment with SBRT; if anything, a tendency toward improvement was found. Conclusions: Stereotactic body radiation therapy combines a high local control rate, by delivering a high dose per fraction, with no significant change in quality of life. Multicenter studies including larger numbers of patients are recommended and under development.« less
  • Purpose: We previously developed a multigene expression model of tumor radiation sensitivity index (RSI) with clinical validation in multiple independent cohorts (breast, rectal, esophageal, and head and neck patients). The purpose of this study was to assess differences between RSI scores in primary colon cancer and metastases. Methods and Materials: Patients were identified from our institutional review board–approved prospective observational protocol. A total of 704 metastatic and 1362 primary lesions were obtained from a de-identified metadata pool. RSI was calculated using the previously published rank-based algorithm. An independent cohort of 29 lung or liver colon metastases treated with 60 Gy in 5more » fractions stereotactic body radiation therapy (SBRT) was used for validation. Results: The most common sites of metastases included liver (n=374; 53%), lung (n=116; 17%), and lymph nodes (n=40; 6%). Sixty percent of metastatic tumors, compared with 54% of primaries, were in the RSI radiation-resistant peak, suggesting metastatic tumors may be slightly more radiation resistant than primaries (P=.01). In contrast, when we analyzed metastases based on anatomical site, we uncovered large differences in RSI. The median RSIs for metastases in descending order of radiation resistance were ovary (0.48), abdomen (0.47), liver (0.43), brain (0.42), lung (0.32), and lymph nodes (0.31) (P<.0001). These findings were confirmed when the analysis was restricted to lesions from the same patient (n=139). In our independent cohort of treated lung and liver metastases, lung metastases had an improved local control rate compared to that in patients with liver metastases (2-year local control rate of 100% vs 73.0%, respectively; P=.026). Conclusions: Assessment of radiation sensitivity between primary and metastatic tissues of colon cancer histology revealed significant differences based on anatomical location of metastases. These initial results warrant validation in a larger clinical cohort.« less
  • Purpose: To evaluate the temporal dose response of normal liver tissue for patients with liver metastases treated with stereotactic body radiation therapy (SBRT). Methods and Materials: Ninety-nine noncontrast follow-up computed tomography (CT) scans of 34 patients who received SBRT between 2004 and 2011 were retrospectively analyzed at a median of 8 months post-SBRT (range, 0.7-36 months). SBRT-induced normal liver tissue density changes in follow-up CT scans were evaluated at 2, 6, 10, 15, and 27 months. The dose distributions from planning CTs were mapped to follow-up CTs to relate the mean Hounsfield unit change ({Delta}HU) to dose received over themore » range 0-55 Gy in 3-5 fractions. An absolute density change of 7 HU was considered a significant radiographic change in normal liver tissue. Results: Increasing radiation dose was linearly correlated with lower post-SBRT liver tissue density (slope, -0.65 {Delta}HU/5 Gy). The threshold for significant change (-7 {Delta}HU) was observed in the range of 30-35 Gy. This effect did not vary significantly over the time intervals evaluated. Conclusions: SBRT induces a dose-dependent and relatively time-independent hypodense radiation reaction within normal liver tissue that is characterized by a decrease of >7 HU in liver density for doses >30-35 Gy.« less
  • Purpose: To analyze the results of stereotactic body radiation therapy (SBRT) in patients with early-stage, localized hepatocellular carcinoma who underwent definitive orthotopic liver transplantation (OLT). Methods and Materials: The subjects of this retrospective report are 38 patients diagnosed with hepatocellular carcinoma who underwent SBRT per institutional phase 1 to 2 eligibility criteria, before definitive OLT. Pre-OLT radiographs were compared with pathologic gold standard. Analysis of treatment failures and deaths was undertaken. Results: With median follow-up of 4.8 years from OLT, 9 of 38 patients (24%) recurred, whereas 10 of 38 patients (26%) died. Kaplan-Meier estimates of 3-year overall survival and disease-free survivalmore » are 77% and 74%, respectively. Sum longest dimension of tumors was significantly associated with disease-free survival (hazard ratio 1.93, P=.026). Pathologic response rate (complete plus partial response) was 68%. Radiographic scoring criteria performed poorly; modified Response Evaluation Criteria in Solid Tumors produced highest concordance (κ = 0.224). Explants revealed viable tumor in 74% of evaluable patients. Treatment failures had statistically larger sum longest dimension of tumors (4.0 cm vs 2.8 cm, P=.014) and non–statistically significant higher rates of lymphovascular space invasion (44% vs 17%), cT2 disease (44% vs 21%), ≥pT2 disease (67% vs 34%), multifocal tumors at time of SBRT (44% vs 21%), and less robust mean α-fetoprotein response (−25 IU/mL vs −162 IU/mL). Conclusions: Stereotactic body radiation therapy before to OLT is a well-tolerated treatment providing 68% pathologic response, though 74% of explants ultimately contained viable tumor. Radiographic response criteria poorly approximate pathology. Our data suggest further stratification of patients according to initial disease burden and treatment response.« less