skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Feasibility of Proton Beam Therapy for Ocular Melanoma Using a Novel 3D Treatment Planning Technique

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1]; ;  [2];  [3];  [2];  [4];  [5];  [6];  [5];  [5]
  1. Retina Consultants, Des Plaines, Illinois (United States)
  2. Northwestern Medicine Chicago Proton Center, Warrenville, Illinois (United States)
  3. Rush Medical College, Chicago, Illinois (United States)
  4. Department of Ophthalmology, Rush University, Chicago, Illinois (United States)
  5. Northwestern Medicine Chicago Proton Center, Proton Collaborative Group, Warrenville, Illinois (United States)
  6. Northwestern Medicine Central DuPage Hospital, Winfield, Illinois (United States)

Purpose: We evaluated sparing of normal structures using 3-dimensional (3D) treatment planning for proton therapy of ocular melanomas. Methods and Materials: We evaluated 26 consecutive patients with choroidal melanomas on a prospective registry. Ophthalmologic work-up included fundoscopic photographs, fluorescein angiography, ultrasonographic evaluation of tumor dimensions, and magnetic resonance imaging of orbits. Three tantalum clips were placed as fiducial markers to confirm eye position for treatment. Macula, fovea, optic disc, optic nerve, ciliary body, lacrimal gland, lens, and gross tumor volume were contoured on treatment planning compute tomography scans. 3D treatment planning was performed using noncoplanar field arrangements. Patients were typically treated with 3 fields, with at least 95% of planning target volume receiving 50 GyRBE in 5 fractions. Results: Tumor stage was T1a in 10 patients, T2a in 10 patients, T2b in 1 patient, T3a in 2 patients, T3b in 1 patient, and T4a in 2 patients. Acute toxicity was mild. All patients completed treatment as planned. Mean optic nerve dose was 10.1 Gy relative biological effectiveness (RBE). Ciliary body doses were higher for nasal (mean: 11.4 GyRBE) than temporal tumors (5.8 GyRBE). Median follow-up was 31 months (range: 18-40 months). Six patients developed changes which required intraocular bevacizumab or corticosteroid therapy, but only 1 patient developed neovascular glaucoma. Five patients have since died: 1 from metastatic disease and 4 from other causes. Two patients have since required enucleation: 1 due to tumor and 1 due to neovascular glaucoma. Conclusions: 3D treatment planning can be used to obtain appropriate coverage of choroidal melanomas. This technique is feasible with relatively low doses to anterior structures, and appears to have acceptable rates of local control with low risk of enucleation. Further evaluation and follow-up is needed to determine optimal dose-volume relationships for organs at risk to decrease complications rates.

OSTI ID:
22648648
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 95, Issue 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English