skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

Abstract

Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discoveredmore » role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.« less

Authors:
 [1];  [2]; ; ; ;  [1];  [1]
  1. Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)
  2. Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)
Publication Date:
OSTI Identifier:
22648588
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 345; Journal Issue: 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CELL PROLIFERATION; FINGERS; GROWTH FACTORS; INHIBITION; MODULATION; MUSCLES; PHOSPHOTRANSFERASES; PLANT GROWTH; RECEPTORS; REGULATIONS; SIGNALS; TROPOMYOSIN; ZINC

Citation Formats

Zeng, Qiu, Wei, Bin, Zhao, Yu, Wang, Xuehu, Fu, Qining, Liu, Hong, and Li, Fenghe, E-mail: lfh_cmu@126.com. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4. United States: N. p., 2016. Web. doi:10.1016/J.YEXCR.2016.05.014.
Zeng, Qiu, Wei, Bin, Zhao, Yu, Wang, Xuehu, Fu, Qining, Liu, Hong, & Li, Fenghe, E-mail: lfh_cmu@126.com. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4. United States. doi:10.1016/J.YEXCR.2016.05.014.
Zeng, Qiu, Wei, Bin, Zhao, Yu, Wang, Xuehu, Fu, Qining, Liu, Hong, and Li, Fenghe, E-mail: lfh_cmu@126.com. 2016. "Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4". United States. doi:10.1016/J.YEXCR.2016.05.014.
@article{osti_22648588,
title = {Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4},
author = {Zeng, Qiu and Wei, Bin and Zhao, Yu and Wang, Xuehu and Fu, Qining and Liu, Hong and Li, Fenghe, E-mail: lfh_cmu@126.com},
abstractNote = {Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.},
doi = {10.1016/J.YEXCR.2016.05.014},
journal = {Experimental Cell Research},
number = 1,
volume = 345,
place = {United States},
year = 2016,
month = 7
}
  • It is known that dehydroepiandrosterone (DHEA) inhibits a phenotypic switch in vascular smooth muscle cells (VSMC) induced by platelet-derived growth factor (PDGF)-BB. However, the mechanism behind the effect of DHEA on VSMC is not clear. Previously we reported that low molecular weight-protein tyrosine phosphatase (LMW-PTP) dephosphorylates PDGF receptor (PDGFR)-{beta} via a redox-dependent mechanism involving glutathione (GSH)/glutaredoxin (GRX)1. Here we demonstrate that the redox regulation of PDGFR-{beta} is involved in the effect of DHEA on VSMC. DHEA suppressed the PDGF-BB-dependent phosphorylation of PDGFR-{beta}. As expected, DHEA increased the levels of GSH and GRX1, and the GSH/GRX1 system maintained the redox statemore » of LMW-PTP. Down-regulation of the expression of LMW-PTP using siRNA restored the suppression of PDGFR-{beta}-phosphorylation by DHEA. A promoter analysis of GRX1 and {gamma}-glutamylcysteine synthetase ({gamma}-GCS), a rate-limiting enzyme of GSH synthesis, showed that DHEA up-regulated the transcriptional activity at the peroxisome proliferator-activated receptor (PPAR) response element, suggesting PPAR{alpha} plays a role in the induction of GRX1 and {gamma}-GCS expression by DHEA. In conclusion, the redox regulation of PDGFR-{beta} is involved in the suppressive effect of DHEA on VSMC proliferation through the up-regulation of GSH/GRX system.« less
  • Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less
  • Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNAmore » 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC phenotypic modulation. These novel findings may have extensive implications for the diagnosis and therapy of a variety of proliferative vascular diseases. - Highlights: ► MiR-31 modulates CREG expression by binding directly to the human CREG mRNA 3′-UTR. ► MiR-31 mediates the human VSMC phenotypic modulation by regulating the expression of human CREG. ► Serum miR-31 may act as an important biomarker in diseases involving in stent restenosis after PCI.« less
  • Platelet-derived growth factor (PDGF), a potent mitogen and chemoattractant for smooth muscle cells and fibroblasts in culture, is believed to play an important role in the formation of proliferative lesions of arterio-sclerosis. PDGF appears as three different dimeric isoforms: AA, AB, and BB. These were recently found to bind to two different receptors, the A/B receptor (which binds all three isoforms) and the B receptor (which binds only PDGF-BB). To find out whether these receptors exhibit functional differences, we have monitored the binding and mitogenic activities of PDGF-AA and -BB in human umbilical vein smooth muscle cells (HSMCs), human dermalmore » fibroblasts (HFs), and Swiss mouse 3T3 cells. With each cell type, there was a good correlation between the maximal levels of DNA synthesis achieved by these isoforms and the numbers of the appropriate receptor present on the cell surface: HMSCs, which have at least 32,000 B receptors but only 8,000 A/B receptors, responded well to PDGF-BB but responded poorly to PDGF-AA; whereas Swiss 3T3 cells, which have about equal numbers of B and A/B receptors (70,000 and 90,000, respectively), responded equally well to both isoforms. PDGF-AB was a more efficacious mitogen of HSMCs and HFs than was PDGF-AA and inhibited (125I)-PDGF-BB binding to HSMCs more effectively than PDGF-AA. This indicates that there may exist a third PDGF receptor type to which PDGF-BB and -AB but not PDGF-AA can bind.« less
  • MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by themore » Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.« less