skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates

Abstract

The crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl{sub 2}–Rb{sub 3}PO{sub 4}–H{sub 2}O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P2{sub 1}/c, Z = 2, D{sub x} = 3.27 g/cm{sup 3}. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A{sub 2}M{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2} diphosphates (A = K, NH{sub 4}, Rb, or Na; {sub M} = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.

Authors:
; ; ;  [1]
  1. Moscow State University, Faculty of Geology (Russian Federation)
Publication Date:
OSTI Identifier:
22645395
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystallography Reports; Journal Volume: 61; Journal Issue: 5; Other Information: Copyright (c) 2016 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CHARGE-COUPLED DEVICES; DIFFRACTOMETERS; MANGANESE CHLORIDES; MONOCLINIC LATTICES; MONOCRYSTALS; RUBIDIUM PHOSPHATES; WATER; X-RAY DIFFRACTION

Citation Formats

Kiriukhina, G. V., E-mail: g-biralo@yandex.ru, Yakubovich, O. V., Dimitrova, O. V., and Volkov, A. S. Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates. United States: N. p., 2016. Web. doi:10.1134/S1063774516050084.
Kiriukhina, G. V., E-mail: g-biralo@yandex.ru, Yakubovich, O. V., Dimitrova, O. V., & Volkov, A. S. Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates. United States. doi:10.1134/S1063774516050084.
Kiriukhina, G. V., E-mail: g-biralo@yandex.ru, Yakubovich, O. V., Dimitrova, O. V., and Volkov, A. S. 2016. "Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates". United States. doi:10.1134/S1063774516050084.
@article{osti_22645395,
title = {Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates},
author = {Kiriukhina, G. V., E-mail: g-biralo@yandex.ru and Yakubovich, O. V. and Dimitrova, O. V. and Volkov, A. S.},
abstractNote = {The crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl{sub 2}–Rb{sub 3}PO{sub 4}–H{sub 2}O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P2{sub 1}/c, Z = 2, D{sub x} = 3.27 g/cm{sup 3}. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A{sub 2}M{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2} diphosphates (A = K, NH{sub 4}, Rb, or Na; {sub M} = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.},
doi = {10.1134/S1063774516050084},
journal = {Crystallography Reports},
number = 5,
volume = 61,
place = {United States},
year = 2016,
month = 9
}
  • A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less
  • Highlights: • Crystal structure of cytochrome c{sub 6B} from Synechococcus sp. WH 8102 was solved. • Basic biophysical properties of cytochrome c{sub 6B} were determined. • Cytochrome c{sub 6B} exhibits similar architecture to cytochrome c{sub 6}. • Organization of heme binding pocket of cytochrome c{sub 6B} differs from that of c{sub 6}. • Midpoint potential of cytochrome c{sub 6B} is significantly lower than of cytochrome c{sub 6}. - Abstract: Cytochromes c are soluble electron carriers of relatively low molecular weight, containing single heme moiety. In cyanobacteria cytochrome c{sub 6} participates in electron transfer from cytochrome b{sub 6}f complex to photosystemmore » I. Recent phylogenetic analysis revealed the existence of a few families of proteins homologous to the previously mentioned. Cytochrome c{sub 6A} from Arabidopsis thaliana was identified as a protein responsible for disulfide bond formation in response to intracellular redox state changes and c{sub 550} is well known element of photosystem II. However, function of cytochromes marked as c{sub 6B}, c{sub 6C} and c{sub M} as well as the physiological process in which they take a part still remain unidentified. Here we present the first structural and biophysical analysis of cytochrome from the c{sub 6B} family from mesophilic cyanobacteria Synechococcus sp. WH 8102. Purified protein was crystallized and its structure was refined at 1.4 Å resolution. Overall architecture of this polypeptide resembles typical I-class cytochromes c. The main features, that distinguish described protein from cytochrome c{sub 6}, are slightly red-shifted α band of UV–Vis spectrum as well as relatively low midpoint potential (113.2 ± 2.2 mV). Although, physiological function of cytochrome c{sub 6B} has yet to be determined its properties probably exclude the participation of this protein in electron trafficking between b{sub 6}f complex and photosystem I.« less
  • The structure of LP2179, a member of the PF08866 (DUF1831) family, suggests a novel {alpha} + {beta} fold comprising two {beta}-sheets packed against a single helix. A remote structural similarity to two other uncharacterized protein families specific to the Bacillus genus (PF08868 and PF08968), as well as to prokaryotic S-adenosylmethionine decarboxylases, is consistent with a role in amino-acid metabolism. Genomic neighborhood analysis of LP2179 supports this functional assignment, which might also then be extended to PF08868 and PF08968.
  • The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.