skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure of ilyukhinite, a new mineral of the eudialyte group

Abstract

The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{sub 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the Ðœ2 position centering the tetragonal pyramid.

Authors:
;  [1];  [2];  [1]
  1. Russian Academy of Sciences, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center (Russian Federation)
  2. Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)
Publication Date:
OSTI Identifier:
22645263
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystallography Reports; Journal Volume: 62; Journal Issue: 1; Other Information: Copyright (c) 2017 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANISOTROPY; ATOMIC DISPLACEMENTS; CATIONS; CRYSTAL STRUCTURE; IRON; MANGANESE; PEGMATITES; SILICATE MINERALS; SODIUM; SPACE GROUPS; TRIGONAL LATTICES; X-RAY DIFFRACTION

Citation Formats

Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru, Rozenberg, K. A., Chukanov, N. V., and Aksenov, S. M. Crystal structure of ilyukhinite, a new mineral of the eudialyte group. United States: N. p., 2017. Web. doi:10.1134/S1063774517010199.
Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru, Rozenberg, K. A., Chukanov, N. V., & Aksenov, S. M. Crystal structure of ilyukhinite, a new mineral of the eudialyte group. United States. doi:10.1134/S1063774517010199.
Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru, Rozenberg, K. A., Chukanov, N. V., and Aksenov, S. M. Sun . "Crystal structure of ilyukhinite, a new mineral of the eudialyte group". United States. doi:10.1134/S1063774517010199.
@article{osti_22645263,
title = {Crystal structure of ilyukhinite, a new mineral of the eudialyte group},
author = {Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru and Rozenberg, K. A. and Chukanov, N. V. and Aksenov, S. M.},
abstractNote = {The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{sub 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the Ðœ2 position centering the tetragonal pyramid.},
doi = {10.1134/S1063774517010199},
journal = {Crystallography Reports},
number = 1,
volume = 62,
place = {United States},
year = {Sun Jan 15 00:00:00 EST 2017},
month = {Sun Jan 15 00:00:00 EST 2017}
}
  • The repeated refinement of the crystal structure of zirconium-rich eudialyte based on the X-ray diffraction data set collected earlier revealed new structural features. The trigonal unit-cell parameters are a = 14.222(3) A, c = 30.165(5) A, V = 5283.9 A{sup 3}. The refinement resulted in the reduction of the R factor from 0.045 (2347F > 4{sigma}(F)) to 0.035 (3124F > 3{sigma}(F)). It was found that the ordering of Ca and Fe in six-membered rings leads to the lowering of the symmetry to R3. An excess amount of zirconium (more than three atoms per symmetrically independent unit) is located in themore » M2 microregion in square and five-vertex polyhedral positions. However, this amount is insufficient to be dominant, and the deficiency of zirconium is compensated for by sodium atoms. Based on the new data, zirconium-rich eudialyte can be assigned to the oneillite subtype, being a zirconium-rich and aluminum variety of raslakite.« less
  • A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Angstrom-Sign , b = 17.901(1) Angstrom-Sign , c = 13.727(1) Angstrom-Sign , {alpha} = 90.018(3) Degree-Sign , {beta} = 97.278(4) Degree-Sign , and {gamma} = 89.952(3) Degree-Sign . The structure is solved by the direct methods in space group P1-bar and refined to R = 5.5% for 4168 |F| > 7{sigma}(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twinmore » components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na{sub 1.6}K{sub 0.2}Ca{sub 0.2})[Ca{sub 2}(Fe{sub 3.6}{sup 2+}Al{sub 1.6}Mn{sub 0.8})(OH){sub 9}(H{sub 2}O){sub 2}][(Fe{sub 3.9}{sup 2+}Ti{sub 0.1})(OH){sub 5} (H{sub 2}O){sub 2}][Si{sub 16}O{sub 38}(OH){sub 2}] {center_dot} 6H{sub 2}O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.« less
  • The crystal structures of two new low-symmetry (sp. gr. R3) representatives of the eudialyte group from Mont Saint-Hilaire (Quebec, Canada) and the Lovozero massif (Kola Peninsula, Russia) were studied by single-crystal X-ray diffraction analysis and refined to R = 0.068 and 0.054 using 2899 reflections with F > 5{sigma}(F) and 2927 reflections with F > 3{sigma}(F), respectively. The idealized formulas of these representatives are Na{sub 13}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Mn){sub 3}({open_square})(Si)[Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}(O, OH, Cl){sub 3} . 2H{sub 2}O and Na{sub 15}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Zr){sub 3}(Si)(Si) . [Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}O{sub 2}(OH,more » F, Cl){sub 2} . 2H{sub 2}O. Both minerals are analogs of oneillite and are characterized by a low Ca content. The distinguishing features of the mineral from Quebec are that the M(4) site is essentially vacant (>50%) and Ca atoms occupy one independent site in the six-membered ring, whereas another site is occupied by Mn along with a small impurity of Na. In the mineral from the Lovozero massif, both the M(3) and M(4) sites are occupied predominantly by silicon, while Ca atoms are distributed between both octahedral sites of the six-membered ring, one of these sites being occupied predominantly by Mn.« less
  • The structure of a new representative of the eudialyte group with the formula (Na,Sr,K){sub 18}Ca{sub 6}Zr{sub 3}Fe[Si{sub 25}O{sub 72}](OH){sub 2}Cl . H{sub 2}O from the Lovozero massif (Kola Peninsula) was studied by X-ray diffraction. The trigonal unit-cell parameters are a = 14.226 A, c = 30.339 A, sp. gr. R3-barm; the R factor is 0.045 based on 990 reflections. This sample is of interest as a sodium-rich and iron-poor mineral having a rare centrosymmetric structure, in which the M(2) site is occupied predominantly by sodium atoms. The dependence of the formation of centrosymmetric and non-centrosymmetric structures on the composition ofmore » eudialyte-group minerals was analyzed.« less
  • The structure of the sodium-rich representative of the eudialyte group found by A.P. Khomyakov at the Lovozero massif (Kola Peninsula) is studied by X-ray diffraction. The trigonal cell parameters are: a = 14.2032(1) and c = 60.612(1) Å, V = 10589.13 Å3, space group R3m. The structure is refined to the final R = 5.0% in the anisotropic approximation of atomic displacement parameters using 3742|F| > 3σ(F). The idealized formula (Z = 3) is Na{sub 37}Ca{sub 10}Mn{sub 2}FeZr{sub 6}Si{sub 50}(Ti, Nb){sub 2}O{sub 144}(OH){sub 5}Cl{sub 3} · H{sub 2}O. Like other 24-layer minerals of the eudialyte group, this mineral has amore » modular structure. Its structure contains two modules, namely, “alluaivite” (with an admixture of “eudialyte”) and “kentbrooksite,” called according to the main structural fragments of alluaivite, eudialyte, and kentbrooksite. The mineral found at the Lovozero alkaline massif shows some chemical and symmetry-structural distinctions from the close-in-composition labyrinthite modular mineral from the Khibiny massif. The difference between the minerals stems from different geochemical conditions of mineral formation in the two regions.« less