skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}

Abstract

Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{sup 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.

Authors:
; ; ;  [1];  [2]
  1. Huzhou University, Department of Material Chemistry (China)
  2. Huzhou Central Hospital, Orthopedic Department (China)
Publication Date:
OSTI Identifier:
22645196
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystallography Reports; Journal Volume: 62; Journal Issue: 2; Other Information: Copyright (c) 2017 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ACTIVATION ENERGY; CALCIUM OXIDES; CRYSTAL GROWTH; CRYSTALLIZATION; FERRITES; IRON OXIDES; PHOSPHATES; PHOSPHORUS OXIDES; SILICA; SILICON OXIDES; THREE-DIMENSIONAL LATTICES; TITANIUM OXIDES; X-RAY DIFFRACTION

Citation Formats

Li, Bin, E-mail: stra-ceo@163.com, Wang, Yongya, Luo, Wenqin, Li, Jingfen, and Li, Jianyou. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}. United States: N. p., 2017. Web. doi:10.1134/S1063774517020080.
Li, Bin, E-mail: stra-ceo@163.com, Wang, Yongya, Luo, Wenqin, Li, Jingfen, & Li, Jianyou. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}. United States. doi:10.1134/S1063774517020080.
Li, Bin, E-mail: stra-ceo@163.com, Wang, Yongya, Luo, Wenqin, Li, Jingfen, and Li, Jianyou. Wed . "Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}". United States. doi:10.1134/S1063774517020080.
@article{osti_22645196,
title = {Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}},
author = {Li, Bin, E-mail: stra-ceo@163.com and Wang, Yongya and Luo, Wenqin and Li, Jingfen and Li, Jianyou},
abstractNote = {Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{sup 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.},
doi = {10.1134/S1063774517020080},
journal = {Crystallography Reports},
number = 2,
volume = 62,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}
  • Highlights: Black-Right-Pointing-Pointer Crystallization of magnetic glass ceramic with different nucleating agents. Black-Right-Pointing-Pointer The effect of La{sub 2}O{sub 3}, CoO, Cr{sub 2}O{sub 3} and MoO{sub 3} as nucleating agents was studied. Black-Right-Pointing-Pointer XRD for as prepared samples revealed crystallization of pure magnetite. Black-Right-Pointing-Pointer Heat treatment revealed minor calcium silicate, hematite and cristobalite. Black-Right-Pointing-Pointer TEM revealed crystallization of crystallite size in the range 50-100 nm. -- Abstract: Preparation and characterization of ferromagnetic glass ceramic in the system Fe{sub 2}O{sub 3}{center_dot}CaO{center_dot}ZnO{center_dot}SiO{sub 2} with different nucleating agents was studied. The effect of La{sub 2}O{sub 3}, CoO, Cr{sub 2}O{sub 3} and MoO{sub 3} as nucleatingmore » agents was investigated. Differential thermal analysis; X-ray diffraction and transmission electron microscope were used to investigate thermal behavior, sequence of crystallization and microstructure of the samples. XRD analysis for as prepared samples revealed the crystallization of single magnetite phase. Heat treatment at 900 Degree-Sign C/2 h revealed the appearance of minor amounts of calcium silicate, hematite and cristobalite beside magnetite. TEM revealed crystallization of crystallite size in the range 50-100 nm. Lattice parameters, cell volume and crystallite size were stimulated from XRD data. Magnetic properties of quenched samples were measured under 20 kG.« less
  • SEM micrographs for the pure CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass sintered at 850–1000 °C (a) 850 °C, (b) 900 °C, (c) 950 °C, (d) 1000 °C. - Highlights: • ZrO{sub 2} effects on the crystallization of LTCC glass system were investigated. • ZrO{sub 2} effects on the dielectric properties of LTCC glass system were investigated. • LTCC with a dielectric constant of 6.65 and a low dielectric loss can be obtained. - Abstract: The zirconium oxide effects on the crystallization and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} (CMAS) glass were investigated. The results showed that phyllosiloxide and anorthite crystallitesmore » were observed in sequence during sintering. For glass added with 8 wt% ZrO{sub 2}, homogeneously dispersed tetragonal ZrO{sub 2} crystallites were observed at 850 °C. The as-prepared CMAS glass–ceramics exhibited a dielectric constant of about 6–7 and a dielectric loss below 0.005 at 100 MHz. The dielectric properties of CMAS glass with 8 wt% ZrO{sub 2} sintered at 850 °C show a low dielectric constant of 6.65 and a dielectric loss tangent of about 2.5 × 10{sup −3}, which provides a promising candidate for LTCC applications.« less
  • The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less
  • Luminescence of phosphate glasses such as CaO⋅P{sub 2}O{sub 5} and SrO⋅P{sub 2}O{sub 5} is compared with that of phosphorus doped crystalline α-quartz and phosphosilicate glass with content 3P{sub 2}O{sub 5}⋅7SiO{sub 2}. Water and OH groups are found by IR spectra in these materials. The spectrum of luminescence contains many bands in the range 1.5 - 5.5 eV. The luminescence bands in UV range at 4.5-5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in μs range was detected. PL band of μs component is shifted to lowmore » energy with respect to that of ∼37 ns component. This shift is about 0.6 eV. It is explained as singlet-triplet splitting of excited state. Below 14 K increase of luminescence kinetics duration in μs range was observed and it was ascribed to zero magnetic field splitting of triplet excited state of the center. Yellow-red luminescence was induced by irradiation in phosphorus doped crystalline α-quartz, phosphosilicate glasses. The yellowl uminescence contains two bands at 600 and 740 nm. Their decay is similar under 193 nm laser and may be fitted with the first order fractal kinetics or stretched exponent. Thermally stimulated luminescence contains only band at 600 nm. The 248 nm laser excites luminescence at 740 nm according to intra center process with decay time constant about 4 ms at 9 K. Both type of luminescence UV and yellow were ascribed to different defects containing phosphorus. P-doped α-quartz sample heated to 550 co become opalescent. Ir spectra related to water and OH groups are changed. Photoluminescence intensity of all three bands, UV (250 nm), yellow (600 nm) and red (740 nm) strongly diminished and disappeared after heating to 660 C°. Radiation induced red luminescence of non-bridging oxygen luminescence center (NBO) appeared in crystal after heat treatment. We had observed a crystalline version of this center (l. Skuja et al, Nuclear Instruments and Methods in Physics Research B 286,159-168 (2012)). Effect of heat treatment explained as sedimentation of phosphorus in some state. Keeping of treated sample at 450-500 C° leads to partial revival of ability to create yellow luminescence center under irradiation.« less