skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy

Abstract

Purpose: Monte Carlo particle transport simulation (MC) codes have become important tools in proton therapy and biology, both for research and practice. TOPAS is an MC toolkit serving users worldwide (213 licensed users at 95 institutions in 21 countries). It provides unprecedented ease in 4D placement of geometry components, beam sources and scoring through its user-friendly and reproducible parameter file interface. Quality control (QC) of stochastic simulation software is inherently difficult, and the versatility of TOPAS introduces additional challenges. But QC is vital as the TOPAS development team implements new features, addresses user feedback and reacts to upgrades of underlying software (i.e. Geant4). Methods: Whenever code is committed to our repository, over 50 separate module tests are automatically triggered via a continuous integration service. They check that the various module options execute successfully and that their results are statistically consistent with previous reference values. Prior to each software release, longer end-to-end tests automatically validate TOPAS against experimental data and a TOPAS benchmark. These include simulating multiple properties of spread-out Bragg peaks, validating nuclear models, and searching for differences in patient simulations. Results: Continuous integration has proven effective in catching regressions at the time they are introduced, particularly when implementing newmore » features that involve refactoring code (e.g. multithreading and ntuple output). Code coverage statistics highlight untested portions of code and guide development of new tests. The various end-to-end tests demonstrate that TOPAS accurately describes the physics of proton therapy within clinical tolerances. Conclusion: The TOPAS QC strategy of frequent short tests and pre-release long tests has led to a more reliable tool. However, the versatility of TOPAS makes it difficult to predict how users might combine different modules, and so QC ultimately remains a partnership between the developer and the user. This work was funded by National Cancer Institute grant R01 CA 140735.« less

Authors:
; ;  [1];  [2];  [3]
  1. Massachusetts General Hospital, Boston, MA (United States)
  2. Stanford Linear Accelerator Center, Menlo Park, CA (United States)
  3. UC San Francisco, San Francisco, CA (United States)
Publication Date:
OSTI Identifier:
22642380
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRAGG CURVE; COMPUTER CODES; COMPUTERIZED SIMULATION; EXPERIMENTAL DATA; MONTE CARLO METHOD; PROTON BEAMS; QUALITY CONTROL; RADIOTHERAPY; STOCHASTIC PROCESSES

Citation Formats

Hall, D, Schuemann, J, Paganetti, H, Perl, J, and Faddegon, B. SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4956275.
Hall, D, Schuemann, J, Paganetti, H, Perl, J, & Faddegon, B. SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy. United States. doi:10.1118/1.4956275.
Hall, D, Schuemann, J, Paganetti, H, Perl, J, and Faddegon, B. 2016. "SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy". United States. doi:10.1118/1.4956275.
@article{osti_22642380,
title = {SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy},
author = {Hall, D and Schuemann, J and Paganetti, H and Perl, J and Faddegon, B},
abstractNote = {Purpose: Monte Carlo particle transport simulation (MC) codes have become important tools in proton therapy and biology, both for research and practice. TOPAS is an MC toolkit serving users worldwide (213 licensed users at 95 institutions in 21 countries). It provides unprecedented ease in 4D placement of geometry components, beam sources and scoring through its user-friendly and reproducible parameter file interface. Quality control (QC) of stochastic simulation software is inherently difficult, and the versatility of TOPAS introduces additional challenges. But QC is vital as the TOPAS development team implements new features, addresses user feedback and reacts to upgrades of underlying software (i.e. Geant4). Methods: Whenever code is committed to our repository, over 50 separate module tests are automatically triggered via a continuous integration service. They check that the various module options execute successfully and that their results are statistically consistent with previous reference values. Prior to each software release, longer end-to-end tests automatically validate TOPAS against experimental data and a TOPAS benchmark. These include simulating multiple properties of spread-out Bragg peaks, validating nuclear models, and searching for differences in patient simulations. Results: Continuous integration has proven effective in catching regressions at the time they are introduced, particularly when implementing new features that involve refactoring code (e.g. multithreading and ntuple output). Code coverage statistics highlight untested portions of code and guide development of new tests. The various end-to-end tests demonstrate that TOPAS accurately describes the physics of proton therapy within clinical tolerances. Conclusion: The TOPAS QC strategy of frequent short tests and pre-release long tests has led to a more reliable tool. However, the versatility of TOPAS makes it difficult to predict how users might combine different modules, and so QC ultimately remains a partnership between the developer and the user. This work was funded by National Cancer Institute grant R01 CA 140735.},
doi = {10.1118/1.4956275},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less
  • Purpose: TOPAS (TOol for PArticle Simulation) is a particle simulation code recently developed with the specific aim of making Monte Carlo simulations user-friendly for research and clinical physicists in the particle therapy community. The authors present a thorough and extensive experimental validation of Monte Carlo simulations performed with TOPAS in a variety of setups relevant for proton therapy applications. The set of validation measurements performed in this work represents an overall end-to-end testing strategy recommended for all clinical centers planning to rely on TOPAS for quality assurance or patient dose calculation and, more generally, for all the institutions using passive-scatteringmore » proton therapy systems. Methods: The authors systematically compared TOPAS simulations with measurements that are performed routinely within the quality assurance (QA) program in our institution as well as experiments specifically designed for this validation study. First, the authors compared TOPAS simulations with measurements of depth-dose curves for spread-out Bragg peak (SOBP) fields. Second, absolute dosimetry simulations were benchmarked against measured machine output factors (OFs). Third, the authors simulated and measured 2D dose profiles and analyzed the differences in terms of field flatness and symmetry and usable field size. Fourth, the authors designed a simple experiment using a half-beam shifter to assess the effects of multiple Coulomb scattering, beam divergence, and inverse square attenuation on lateral and longitudinal dose profiles measured and simulated in a water phantom. Fifth, TOPAS’ capabilities to simulate time dependent beam delivery was benchmarked against dose rate functions (i.e., dose per unit time vs time) measured at different depths inside an SOBP field. Sixth, simulations of the charge deposited by protons fully stopping in two different types of multilayer Faraday cups (MLFCs) were compared with measurements to benchmark the nuclear interaction models used in the simulations. Results: SOBPs’ range and modulation width were reproduced, on average, with an accuracy of +1, −2 and ±3 mm, respectively. OF simulations reproduced measured data within ±3%. Simulated 2D dose-profiles show field flatness and average field radius within ±3% of measured profiles. The field symmetry resulted, on average in ±3% agreement with commissioned profiles. TOPAS accuracy in reproducing measured dose profiles downstream the half beam shifter is better than 2%. Dose rate function simulation reproduced the measurements within ∼2% showing that the four-dimensional modeling of the passively modulation system was implement correctly and millimeter accuracy can be achieved in reproducing measured data. For MLFCs simulations, 2% agreement was found between TOPAS and both sets of experimental measurements. The overall results show that TOPAS simulations are within the clinical accepted tolerances for all QA measurements performed at our institution. Conclusions: Our Monte Carlo simulations reproduced accurately the experimental data acquired through all the measurements performed in this study. Thus, TOPAS can reliably be applied to quality assurance for proton therapy and also as an input for commissioning of commercial treatment planning systems. This work also provides the basis for routine clinical dose calculations in patients for all passive scattering proton therapy centers using TOPAS.« less
  • Purpose: TOPAS (TOol for PArticle Simulation) is a particle simulation code recently developed with the specific aim of making Monte Carlo simulations user-friendly for research and clinical physicists in the particle therapy community. The authors present a thorough and extensive experimental validation of Monte Carlo simulations performed with TOPAS in a variety of setups relevant for proton therapy applications. The set of validation measurements performed in this work represents an overall end-to-end testing strategy recommended for all clinical centers planning to rely on TOPAS for quality assurance or patient dose calculation and, more generally, for all the institutions using passive-scatteringmore » proton therapy systems. Methods: The authors systematically compared TOPAS simulations with measurements that are performed routinely within the quality assurance (QA) program in our institution as well as experiments specifically designed for this validation study. First, the authors compared TOPAS simulations with measurements of depth-dose curves for spread-out Bragg peak (SOBP) fields. Second, absolute dosimetry simulations were benchmarked against measured machine output factors (OFs). Third, the authors simulated and measured 2D dose profiles and analyzed the differences in terms of field flatness and symmetry and usable field size. Fourth, the authors designed a simple experiment using a half-beam shifter to assess the effects of multiple Coulomb scattering, beam divergence, and inverse square attenuation on lateral and longitudinal dose profiles measured and simulated in a water phantom. Fifth, TOPAS’ capabilities to simulate time dependent beam delivery was benchmarked against dose rate functions (i.e., dose per unit time vs time) measured at different depths inside an SOBP field. Sixth, simulations of the charge deposited by protons fully stopping in two different types of multilayer Faraday cups (MLFCs) were compared with measurements to benchmark the nuclear interaction models used in the simulations. Results: SOBPs’ range and modulation width were reproduced, on average, with an accuracy of +1, −2 and ±3 mm, respectively. OF simulations reproduced measured data within ±3%. Simulated 2D dose-profiles show field flatness and average field radius within ±3% of measured profiles. The field symmetry resulted, on average in ±3% agreement with commissioned profiles. TOPAS accuracy in reproducing measured dose profiles downstream the half beam shifter is better than 2%. Dose rate function simulation reproduced the measurements within ∼2% showing that the four-dimensional modeling of the passively modulation system was implement correctly and millimeter accuracy can be achieved in reproducing measured data. For MLFCs simulations, 2% agreement was found between TOPAS and both sets of experimental measurements. The overall results show that TOPAS simulations are within the clinical accepted tolerances for all QA measurements performed at our institution. Conclusions: Our Monte Carlo simulations reproduced accurately the experimental data acquired through all the measurements performed in this study. Thus, TOPAS can reliably be applied to quality assurance for proton therapy and also as an input for commissioning of commercial treatment planning systems. This work also provides the basis for routine clinical dose calculations in patients for all passive scattering proton therapy centers using TOPAS.« less
  • Purpose: To estimate the dose delivered to a moving lung tumor by proton therapy beams of different modulation types, and compare with Monte Carlo predictions. Methods: A radiology support devices (RSD) phantom was irradiated with therapeutic proton radiation beams using two different types of modulation: uniform scanning (US) and double scattered (DS). The Eclipse© dose plan was designed to deliver 1.00Gy to the isocenter of a static ∼3×3×3cm (27cc) tumor in the phantom with 100% coverage. The peak to peak amplitude of tumor motion varied from 0.0 to 2.5cm. The radiation dose was measured with an ion-chamber (CC-13) located withinmore » the tumor. The time required to deliver the radiation dose varied from an average of 65s for the DS beams to an average of 95s for the US beams. Results: The amount of radiation dose varied from 100% (both US and DS) to the static tumor down to approximately 92% for the moving tumor. The ratio of US dose to DS dose ranged from approximately 1.01 for the static tumor, down to 0.99 for the 2.5cm moving tumor. A Monte Carlo simulation using TOPAS included a lung tumor with 4.0cm of peak to peak motion. In this simulation, the dose received by the tumor varied by ∼40% as the period of this motion varied from 1s to 4s. Conclusion: The radiation dose deposited to a moving tumor was less than for a static tumor, as expected. At large (2.5cm) amplitudes, the DS proton beams gave a dose closer to the desired dose than the US beams, but equal within experimental uncertainty. TOPAS Monte Carlo simulation can give insight into the moving tumor — dose relationship. This work was supported in part by the Philips corporation.« less
  • Purpose: This study provides an overview of the design and commissioning of the Monte Carlo (MC) model of the spot-scanning proton therapy nozzle and its implementation for the patient plan simulation. Methods: The Hitachi PROBEAT V scanning nozzle was simulated based on vendor specifications using the TOPAS extension of Geant4 code. FLUKA MC simulation was also utilized to provide supporting data for the main simulation. Validation of the MC model was performed using vendor provided data and measurements collected during acceptance/commissioning of the proton therapy machine. Actual patient plans using CT based treatment geometry were simulated and compared to themore » dose distributions produced by the treatment planning system (Varian Eclipse 13.6), and patient quality assurance measurements. In-house MATLAB scripts are used for converting DICOM data into TOPAS input files. Results: Comparison analysis of integrated depth doses (IDDs), therapeutic ranges (R90), and spot shape/sizes at different distances from the isocenter, indicate good agreement between MC and measurements. R90 agreement is within 0.15 mm across all energy tunes. IDDs and spot shapes/sizes differences are within statistical error of simulation (less than 1.5%). The MC simulated data, validated with physical measurements, were used for the commissioning of the treatment planning system. Patient geometry simulations were conducted based on the Eclipse produced DICOM plans. Conclusion: The treatment nozzle and standard option beam model were implemented in the TOPAS framework to simulate a highly conformal discrete spot-scanning proton beam system.« less