skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

Abstract

Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. Themore » Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.« less

Authors:
; ;  [1];  [2]; ;  [3];  [4]
  1. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD (United States)
  2. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)
  3. Department of Physics, East Carolina University Greenville, NC (United States)
  4. Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD (United States)
Publication Date:
OSTI Identifier:
22642357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTERIZED TOMOGRAPHY; ESOPHAGUS; MAMMARY GLANDS; MONTE CARLO METHOD; NEOPLASMS; PATIENTS; RADIATION DOSES; RADIOTHERAPY; RISK ASSESSMENT

Citation Formats

Mosher, E, Kim, S, Lee, C, Lee, C, Pelletier, C, Jung, J, and Jones, E. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients. United States: N. p., 2016. Web. doi:10.1118/1.4956251.
Mosher, E, Kim, S, Lee, C, Lee, C, Pelletier, C, Jung, J, & Jones, E. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients. United States. doi:10.1118/1.4956251.
Mosher, E, Kim, S, Lee, C, Lee, C, Pelletier, C, Jung, J, and Jones, E. 2016. "SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients". United States. doi:10.1118/1.4956251.
@article{osti_22642357,
title = {SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients},
author = {Mosher, E and Kim, S and Lee, C and Lee, C and Pelletier, C and Jung, J and Jones, E},
abstractNote = {Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.},
doi = {10.1118/1.4956251},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This research was supported by the NIH Intramural Research Program.« less
  • Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam typesmore » used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses.« less
  • Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to themore » pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less
  • Purpose: The purpose of this study was to investigate the role of postmastectomy radiation therapy (PMRT) after neoadjuvant chemotherapy (NAC) in clinical stage II-III breast cancer patients with pN0. Methods and Materials: We retrospectively identified 417 clinical stage II-III breast cancer patients who achieved an ypN0 at surgery after receiving NAC between 1998 and 2009. Of these, 151 patients underwent mastectomy after NAC. The effect of PMRT on disease-free survival (DFS), locoregional recurrence-free survival (LRRFS), and overall survival (OS) was evaluated by multivariate analysis including known prognostic factors using the Kaplan-Meier method and compared using the log–rank test and Coxmore » proportional regression analysis. Results: Of the 151 patients who underwent mastectomy, 105 (69.5%) received PMRT and 46 patients (30.5%) did not. At a median follow-up of 59 months, 5 patients (3.3%) developed LRR (8 sites of recurrence) and 14 patients (9.3%) developed distant metastasis. The 5-year DFS, LRRFS, and OS rates were 91.2, 98.1, and 93.3% with PMRT and 83.0%, 92.3%, and 89.9% without PMRT, respectively (all P values not significant). By univariate analysis, only age (≤40 vs >40 years) was significantly associated with decreased DFS (P=.027). By multivariate analysis, age (≤40 vs >40 years) and pathologic T stage (0-is vs 1 vs 2-4) were significant prognostic factors affecting DFS (hazard ratio [HR] 0.353, 95% confidence interval [CI] 0.135-0.928, P=.035; HR 2.223, 95% CI 1.074-4.604, P=.031, respectively). PMRT showed no correlation with a difference in DFS, LRRFS, or OS by multivariate analysis. Conclusions: PMRT might not be necessary for pN0 patients after NAC, regardless of clinical stage. Prospective randomized clinical trial data are needed to assess whether PMRT can be safely omitted in pN0 patients after NAC and mastectomy for clinical stage II-III breast cancer.« less
  • Purpose: To evaluate the predictive factors for rectal dose of the first fraction of high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From March 1993 through February 2008, 946 patients undergoing pelvic irradiation and HDR-ICBT were analyzed. Examination under anesthesia (EUA) at the first implantation of the applicator was usually performed in the early period. Rectal point was determined radiographically according to the 38th Report of the International Commission of Radiation Units and Measurements (ICRU). The ICRU rectal dose (PRD) as a percentage of point A dose was calculated; multiple linear regression models were used tomore » predict PRD. Results: Factors influencing successful rectal dose calculation were EUA (p < 0.001) and absence of diabetes (p = 0.047). Age (p < 0.001), body weight (p = 0.002), diabetes (p = 0.020), and EUA (p < 0.001) were independent factors for the PRD. The predictive equation derived from the regression model was PRD (%) = 57.002 + 0.443 x age (years) - 0.257 x body weight (kg) + 6.028 x diabetes (no: 0; yes: 1) - 8.325 x EUA (no: 0; yes: 1) Conclusion: Rectal dose at the first fraction of HDR-ICBT is positively influenced by age and diabetes, and negatively correlated with EUA and body weight. A small fraction size at point A may be considered in patients with a potentially high rectal dose to reduce the biologically effective dose if the ICRU rectal dose has not been immediately obtained in the first fraction of HDR-ICBT.« less