skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector

Abstract

Purpose: The aim of this work was to determine experimentally the effective point of measurement (EPOM) in clinical electron beams for three cylindrical ionization chambers using a commercial scintillation detector as a reference detector. Methods: Percent depth dose (PDD) curves were measured using an Exradin W1 scintillation detector and were used as a representative PDD to water. Depth dose curves were measured with the Exradin A18, A1SL, and A28 ionization chambers. The raw ionization chamber curve data were corrected by the chamber fluence perturbation correction factor and restricted mass collisional stopping power ratio at each depth to obtain a percent depth dose curve to the gas volume (PDDGV) of the detector. Ratios of the W1 PDD to the ion chamber PDDGV were calculated for each measurement depth. The W1 PDD curve was shifted by small depth increments, Δz, until the ratio of the W1 PDD to the ion chamber PDDGV was depth-independent (optimal Δz). A MATLAB routine was developed to determine the optimal Δz value. Results: The optimal Δz shift was used as an estimate of the EPOM for each chamber. The average calculated EPOM shifts (expressed as a fraction of the chamber cavity radius) for the A18, A1SL, andmore » A28 ionization chambers were 0.21 ± 0.04, 0.10 ± 0.05, and 0.22 ± 0.03, respectively. Conclusion: The experimentally determined EPOM values for the A18 and A1SL in this work agreed with the simulated values of Muir and Rogers (MedPhys 2014). The results also indicate that the Exradin W1 scintillator is water equivalent for electron energies of 6 MeV, 9 MeV, 12 MeV, and 16 MeV. In addition, we confirmed that the AAPM TG51 recommended EPOM shift of 0.5 times the cavity radius is not accurate for the A18 and A1SL chambers.« less

Authors:
; ;  [1]
  1. University of Wisc Madison, Madison, WI (United States)
Publication Date:
OSTI Identifier:
22642321
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CORRECTIONS; CYLINDRICAL CONFIGURATION; DEPTH DOSE DISTRIBUTIONS; ELECTRON BEAMS; IONIZATION CHAMBERS; PERTURBATION THEORY; PHOSPHORS; SCINTILLATION COUNTERS; SCINTILLATIONS; SIMULATION; STOPPING POWER

Citation Formats

Simiele, E, Smith, B, and Culberson, W. SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector. United States: N. p., 2016. Web. doi:10.1118/1.4956209.
Simiele, E, Smith, B, & Culberson, W. SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector. United States. doi:10.1118/1.4956209.
Simiele, E, Smith, B, and Culberson, W. 2016. "SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector". United States. doi:10.1118/1.4956209.
@article{osti_22642321,
title = {SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector},
author = {Simiele, E and Smith, B and Culberson, W},
abstractNote = {Purpose: The aim of this work was to determine experimentally the effective point of measurement (EPOM) in clinical electron beams for three cylindrical ionization chambers using a commercial scintillation detector as a reference detector. Methods: Percent depth dose (PDD) curves were measured using an Exradin W1 scintillation detector and were used as a representative PDD to water. Depth dose curves were measured with the Exradin A18, A1SL, and A28 ionization chambers. The raw ionization chamber curve data were corrected by the chamber fluence perturbation correction factor and restricted mass collisional stopping power ratio at each depth to obtain a percent depth dose curve to the gas volume (PDDGV) of the detector. Ratios of the W1 PDD to the ion chamber PDDGV were calculated for each measurement depth. The W1 PDD curve was shifted by small depth increments, Δz, until the ratio of the W1 PDD to the ion chamber PDDGV was depth-independent (optimal Δz). A MATLAB routine was developed to determine the optimal Δz value. Results: The optimal Δz shift was used as an estimate of the EPOM for each chamber. The average calculated EPOM shifts (expressed as a fraction of the chamber cavity radius) for the A18, A1SL, and A28 ionization chambers were 0.21 ± 0.04, 0.10 ± 0.05, and 0.22 ± 0.03, respectively. Conclusion: The experimentally determined EPOM values for the A18 and A1SL in this work agreed with the simulated values of Muir and Rogers (MedPhys 2014). The results also indicate that the Exradin W1 scintillator is water equivalent for electron energies of 6 MeV, 9 MeV, 12 MeV, and 16 MeV. In addition, we confirmed that the AAPM TG51 recommended EPOM shift of 0.5 times the cavity radius is not accurate for the A18 and A1SL chambers.},
doi = {10.1118/1.4956209},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to amore » calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.« less
  • Purpose: This work presents the experimental extraction of the overall perturbation factor P{sub Q} in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in goodmore » agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R{sub 50} of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.« less
  • Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods:more » In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.« less
  • A method is described in some detail for measuring the magnitude and penetration of the electron contamination in photon beams using a pancake charge detector. It is shown that the response of the detector to a photon beam can be separated from the component due to the electron contamination. In the present work, the detector is used to measure the electron fluence in a /sup 60/Co photon beam. This fluence is subsequently converted to dose by comparison with the fluence and dose measured from a pure electron beam (/sup 90/Sr). This study proves, within experimental error, that the observed changesmore » in the buildup region, with the collimator opening for both filtered and unfiltered /sup 60/Co beams, are due to electron, rather than photon, contamination.« less
  • This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6more » times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within {+-}0.5%.« less