skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations

Abstract

Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkage rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. Themore » normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.« less

Authors:
; ; ; ;  [1]
  1. University of California San Francisco, San Francisco, CA (United States)
Publication Date:
OSTI Identifier:
22642292
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; BRAIN; CESIUM 131; IODINE 125; MEDICAL SURVEILLANCE; METASTASES; PATIENTS; RADIATION DOSES; RADIATION SOURCE IMPLANTS; RICHLAND; SHRINKAGE

Citation Formats

Han, D, Braunstein, S, Sneed, P, McDermott, M, and Ma, L. SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations. United States: N. p., 2016. Web. doi:10.1118/1.4956178.
Han, D, Braunstein, S, Sneed, P, McDermott, M, & Ma, L. SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations. United States. doi:10.1118/1.4956178.
Han, D, Braunstein, S, Sneed, P, McDermott, M, and Ma, L. 2016. "SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations". United States. doi:10.1118/1.4956178.
@article{osti_22642292,
title = {SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations},
author = {Han, D and Braunstein, S and Sneed, P and McDermott, M and Ma, L},
abstractNote = {Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkage rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. The normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.},
doi = {10.1118/1.4956178},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The purpose of this study was to analyze results of adjuvant stereotactic radiosurgery (SRS) targeted at resection cavities of brain metastases without whole-brain irradiation (WBI). Methods and Materials: Patients who underwent SRS to the tumor bed, deferring WBI after resection of a brain metastasis, were retrospectively identified. Results: Seventy-two patients with 76 cavities treated from 1998 to 2006 met inclusion criteria. The SRS was delivered to a median marginal dose of 18.6 Gy (range, 15-30 Gy) targeting an average tumor volume of 9.8 cm{sup 3} (range, 0.1-66.8 cm{sup 3}). With a median follow-up of 8.1 months (range, 0.1-80.5 months),more » 65 patients had follow-up imaging assessable for control analyses. Actuarial local control rates at 6 and 12 months were 88% and 79%, respectively. On univariate analysis, increasing values of conformality indices were the only treatment variables that correlated significantly with improved local control; local control was 100% for the least conformal quartile compared with 63% for the remaining quartiles. Target volume, dose, and number of sessions were not statistically significant. Conclusions: In this retrospective series, SRS administered to the resection cavity of brain metastases resulted in a 79% local control rate at 12 months. This value compares favorably with historic results with observation alone (54%) and postoperative WBI (80-90%). Given the improved local control seen with less conformal plans, we recommend inclusion of a 2-mm margin around the resection cavity when using this technique.« less
  • Purpose: Given the neurocognitive toxicity associated with whole-brain irradiation (WBRT), approaches to defer or avoid WBRT after surgical resection of brain metastases are desirable. Our initial experience with stereotactic radiosurgery (SRS) targeting the resection cavity showed promising results. We examined the outcomes of postoperative resection cavity SRS to determine the effect of adding a 2-mm margin around the resection cavity on local failure (LF) and toxicity. Patients and Methods: We retrospectively evaluated 120 cavities in 112 patients treated from 1998-2009. Factors associated with LF and distant brain failure (DF) were analyzed using competing risks analysis, with death as a competingmore » risk. The overall survival (OS) rate was calculated by the Kaplan-Meier product-limit method; variables associated with OS were evaluated using the Cox proportional hazards and log rank tests. Results: The 12-month cumulative incidence rates of LF and DF, with death as a competing risk, were 9.5% and 54%, respectively. On univariate analysis, expansion of the cavity with a 2-mm margin was associated with decreased LF; the 12-month cumulative incidence rates of LF with and without margin were 3% and 16%, respectively (P=.042). The 12-month toxicity rates with and without margin were 3% and 8%, respectively (P=.27). On multivariate analysis, melanoma histology (P=.038) and number of brain metastases (P=.0097) were associated with higher DF. The median OS time was 17 months (range, 2-114 months), with a 12-month OS rate of 62%. Overall, WBRT was avoided in 72% of the patients. Conclusion: Adjuvant SRS targeting the resection cavity of brain metastases results in excellent local control and allows WBRT to be avoided in a majority of patients. A 2-mm margin around the resection cavity improved local control without increasing toxicity compared with our prior technique with no margin.« less
  • Purpose: To evaluate the clinical outcomes with linear accelerator-based multidose stereotactic radiosurgery (SRS) to large postoperative resection cavities in patients with large brain metastases. Methods and Materials: Between March 2005 to May 2012, 101 patients with a single brain metastasis were treated with surgery and multidose SRS (9 Gy × 3) for large resection cavities (>3 cm). The target volume was the resection cavity with the inclusion of a 2-mm margin. The median cavity volume was 17.5 cm{sup 3} (range, 12.6-35.7 cm{sup 3}). The primary endpoint was local control. Secondary endpoints were survival and distant failure rates, cause of death,more » performance measurements, and toxicity of treatment. Results: With a median follow-up of 16 months (range, 6-44 months), the 1-year and 2-year actuarial survival rates were 69% and 34%, respectively. The 1-year and 2-year local control rates were 93% and 84%, with respective incidences of new distant brain metastases of 50% and 66%. Local control was similar for radiosensitive (non-small cell lung cancer and breast cancer) and radioresistant (melanoma and renal cell cancer) brain metastases. On multivariate Cox analysis stable extracranial disease, breast cancer histology, and Karnofsky performance status >70 were associated with significant survival benefit. Brain radionecrosis occurred in 9 patients (9%), being symptomatic in 5 patients (5%). Conclusions: Adjuvant multidose SRS to resection cavity represents an effective treatment option that achieves excellent local control and defers the use of whole-brain radiation therapy in selected patients with large brain metastases.« less
  • Purpose: We sought to determine the risk of leptomeningeal disease (LMD) in patients treated with stereotactic radiosurgery (SRS) targeting the postsurgical resection cavity of a brain metastasis, deferring whole-brain radiation therapy (WBRT) in all patients. Methods and Materials: We retrospectively reviewed 175 brain metastasis resection cavities in 165 patients treated from 1998 to 2011 with postoperative SRS. The cumulative incidence rates, with death as a competing risk, of LMD, local failure (LF), and distant brain parenchymal failure (DF) were estimated. Variables associated with LMD were evaluated, including LF, DF, posterior fossa location, resection type (en-bloc vs piecemeal or unknown), andmore » histology (lung, colon, breast, melanoma, gynecologic, other). Results: With a median follow-up of 12 months (range, 1-157 months), median overall survival was 17 months. Twenty-one of 165 patients (13%) developed LMD at a median of 5 months (range, 2-33 months) following SRS. The 1-year cumulative incidence rates, with death as a competing risk, were 10% (95% confidence interval [CI], 6%-15%) for developing LF, 54% (95% CI, 46%-61%) for DF, and 11% (95% CI, 7%-17%) for LMD. On univariate analysis, only breast cancer histology (hazard ratio, 2.96) was associated with an increased risk of LMD. The 1-year cumulative incidence of LMD was 24% (95% CI, 9%-41%) for breast cancer compared to 9% (95% CI, 5%-14%) for non-breast histology (P=.004). Conclusions: In patients treated with SRS targeting the postoperative cavity following resection, those with breast cancer histology were at higher risk of LMD. It is unknown whether the inclusion of whole-brain irradiation or novel strategies such as preresection SRS would improve this risk or if the rate of LMD is inherently higher with breast histology.« less
  • Purpose: In patients who undergo resection of central nervous system metastases, whole brain radiotherapy (WBRT) is added to reduce the rates of recurrence and neurologic death. However, the risk of late neurotoxicity has led many patients to decline WBRT. We offered adjuvant stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) as an alternative to select patients with resected brain metastases. Methods and Materials: We performed a retrospective review of patients who underwent brain metastasis resection followed by SRS/SRT. WBRT was administered only as salvage treatment. Patients had one to four brain metastases. The dose was 15-18 Gy for SRS and 22-27.5more » Gy in four to six fractions for SRT. Target margins were typically expanded by 1 mm for rigid immobilization and 3 mm for mask immobilization. SRS/SRT involved the use of linear accelerator radiosurgery using the IMRT 21EX or Helical Tomotherapy unit. Results: Between December 1999 and January 2007, 30 patients diagnosed with intracranial metastases were treated with resection followed by SRS or SRT to the resection cavity. Of the 30 patients, 4 (13.3%) developed recurrence in the resection cavity, and 19 (63%) developed recurrences in new intracranial sites. The actuarial 12-month survival rate was 82% for local recurrence-free survival, 31% for freedom from new brain metastases, 67% for neurologic deficit-free survival, and 51% for overall survival. Salvage WBRT was performed in 14 (47%) of the 30 patients. Conclusion: Our results suggest that for patients with newly diagnosed brain metastases treated with surgical resection, postoperative SRS/SRT to the resection cavity is a feasible option. WBRT can be reserved as salvage treatment with acceptable neurologic deficit-free survival.« less