skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations

Abstract

Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkage rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. Themore » normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.« less

Authors:
; ; ; ;  [1]
  1. University of California San Francisco, San Francisco, CA (United States)
Publication Date:
OSTI Identifier:
22642292
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; BRAIN; CESIUM 131; IODINE 125; MEDICAL SURVEILLANCE; METASTASES; PATIENTS; RADIATION DOSES; RADIATION SOURCE IMPLANTS; RICHLAND; SHRINKAGE

Citation Formats

Han, D, Braunstein, S, Sneed, P, McDermott, M, and Ma, L. SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations. United States: N. p., 2016. Web. doi:10.1118/1.4956178.
Han, D, Braunstein, S, Sneed, P, McDermott, M, & Ma, L. SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations. United States. doi:10.1118/1.4956178.
Han, D, Braunstein, S, Sneed, P, McDermott, M, and Ma, L. Wed . "SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations". United States. doi:10.1118/1.4956178.
@article{osti_22642292,
title = {SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations},
author = {Han, D and Braunstein, S and Sneed, P and McDermott, M and Ma, L},
abstractNote = {Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkage rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. The normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.},
doi = {10.1118/1.4956178},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}