skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations

Abstract

Purpose: In general, the air-kerma strength (Sk) has been determined by the energy weighting the photon energy fluence and the corresponding mass-energy absorption coefficient or mass-energy transfer coefficient. Kerma is an acronym for kinetic energy released per unit mass, defined as the sum of the initial kinetic energies of all the charged particles. Monte Carlo (MC) simulations can investigate the kinetic energy of the charged particles after photo interactions and sum the energy. The Sk of {sup 192}Ir source is obtained in the full MC simulation and finally the dose rate constant Λ is determine. Methods: MC simulations were performed using EGS5 with the microSelectron HDR v2 type of {sup 192}Ir source. The air-kerma rate obtained to sum the electron kinetic energy after photoelectric absorption or Compton scattering for transverse-axis distance from 1 to 120 cm with a 10 m diameter air phantom. Absorbed dose in water is simulated with a 30 cm diameter water phantom. The transport cut-off energy is 10 keV and primary photons from the source need two hundred and forty billion in the air-kerma rate and thirty billion in absorbed dose in water. Results: Sk is multiplied by the square of the distance in air-kerma ratemore » and determined by fitting a linear function. The result of Sk is (2.7039±0.0085)*10-{sup −11} µGy m{sup 2} Bq{sup −1} s{sup −1}. Absorbed dose rate in water at 1 cm transverse-axis distance D(r{sub 0}, θ{sub 0}) is (3.0114±0.0015)*10{sup −11} cGy Bq{sup −1} s{sup −1}. Conclusion: From the results, dose rate constant Λ of the microSelectron HDR v2 type of {sup 192}Ir source is (1.1137±0.0035) cGy h{sup −1} U{sup −1} by the full MC simulations. The consensus value conΛ is (1.109±0.012) cGy h{sup −1} U{sup −1}. The result value is consistent with the consensus data conΛ.« less

Authors:
 [1];  [2];  [3]
  1. Kawasaki Medical School, Kurashiki, Okayama (Japan)
  2. Graduate School of Health Sciences, Okayama University, Okayama, Okayama (Japan)
  3. Kawasaki College of Allied Health Professions, Kurashiki, Okayama (Japan)
Publication Date:
OSTI Identifier:
22642283
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; ABSORBED RADIATION DOSES; COMPTON EFFECT; COMPUTERIZED SIMULATION; DOSE RATES; ENERGY ABSORPTION; ENERGY TRANSFER; IRIDIUM 192; KERMA; MONTE CARLO METHOD; PHANTOMS; REACTION KINETICS; FUNDAMENTAL INTERACTIONS

Citation Formats

Tsuji, S, Oita, M, and Narihiro, N. SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations. United States: N. p., 2016. Web. doi:10.1118/1.4956168.
Tsuji, S, Oita, M, & Narihiro, N. SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations. United States. doi:10.1118/1.4956168.
Tsuji, S, Oita, M, and Narihiro, N. 2016. "SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations". United States. doi:10.1118/1.4956168.
@article{osti_22642283,
title = {SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations},
author = {Tsuji, S and Oita, M and Narihiro, N},
abstractNote = {Purpose: In general, the air-kerma strength (Sk) has been determined by the energy weighting the photon energy fluence and the corresponding mass-energy absorption coefficient or mass-energy transfer coefficient. Kerma is an acronym for kinetic energy released per unit mass, defined as the sum of the initial kinetic energies of all the charged particles. Monte Carlo (MC) simulations can investigate the kinetic energy of the charged particles after photo interactions and sum the energy. The Sk of {sup 192}Ir source is obtained in the full MC simulation and finally the dose rate constant Λ is determine. Methods: MC simulations were performed using EGS5 with the microSelectron HDR v2 type of {sup 192}Ir source. The air-kerma rate obtained to sum the electron kinetic energy after photoelectric absorption or Compton scattering for transverse-axis distance from 1 to 120 cm with a 10 m diameter air phantom. Absorbed dose in water is simulated with a 30 cm diameter water phantom. The transport cut-off energy is 10 keV and primary photons from the source need two hundred and forty billion in the air-kerma rate and thirty billion in absorbed dose in water. Results: Sk is multiplied by the square of the distance in air-kerma rate and determined by fitting a linear function. The result of Sk is (2.7039±0.0085)*10-{sup −11} µGy m{sup 2} Bq{sup −1} s{sup −1}. Absorbed dose rate in water at 1 cm transverse-axis distance D(r{sub 0}, θ{sub 0}) is (3.0114±0.0015)*10{sup −11} cGy Bq{sup −1} s{sup −1}. Conclusion: From the results, dose rate constant Λ of the microSelectron HDR v2 type of {sup 192}Ir source is (1.1137±0.0035) cGy h{sup −1} U{sup −1} by the full MC simulations. The consensus value conΛ is (1.109±0.012) cGy h{sup −1} U{sup −1}. The result value is consistent with the consensus data conΛ.},
doi = {10.1118/1.4956168},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: For a given radionuclide, there are several photon spectrum choices available to dosimetry investigators for simulating the radiation emissions from brachytherapy sources. This study examines the dosimetric influence of selecting the spectra for {sup 192}Ir, {sup 125}I, and {sup 103}Pd on the final estimations of kerma and dose. Methods: For {sup 192}Ir, {sup 125}I, and {sup 103}Pd, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of {sup 192}Ir, {sup 125}I, and {supmore » 103}Pd spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for {sup 192}Ir, {sup 125}I, and {sup 103}Pd, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.« less
  • The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seedmore » was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.« less
  • Ytterbium-169 ([sup 169]Yb) is a promising new isotope for brachytherapy with a half life of 32 days and an average photon energy of 93 KeV. It has an Ir-192-equivalent dose distribution in water but a much smaller half-value layer in lead (0.2 mm), affording improved radiation protection and customized shielding of dose-limiting anatomic structures. The goals of this study are to: (a) experimentally validate Monte Carlo photon transport dose-rate calculations for this energy range, (b) to develop a secondary air-kerma strength standard for [sup 169]Yb, and (c) to present essential treatment planning data including the transverse-axis dose-rate distribution and dosemore » correction factors for a number of local shielding materials. Several interstitial [sup 169]Yb sources (type 6) and an experimental high dose-rate source were made available for this study. Monte Carlo photon-transport (MCPT) simulations, based upon validated geometric models of source structure, were used to calculate dose rates in water. To verify MCPT predictions, the transverse-axis dose distribution in homogeneous water medium was measured using a silicon-diode detector. For use in designing shielded applicators, heterogeneity correction factors (HCF) arising from small cylindrical heterogeneities of lead, aluminum, titanium, steel and air were measured in a water medium. Finally, to provide a sound experimental basis for comparing experimental and theoretical dose-rate distributions, the air-kerma strength of the sources was measured using a calibrated ion chamber. To eliminate the influence of measurement artifacts on the comparison of theory and measurement, simulated detector readings were compared directly to measured diode readings. The final data are presented in the format endorsed by the Interstitial Collaborative Working Group. 33 refs., 8 figs., 3 tabs.« less
  • The increased demand for high dose rate (HDR) brachytherapy as an alternative to external beam radiotherapy has led to the introduction of a HDR brachytherapy isotope {sup 169}Yb. This source offers a dose rate similar to {sup 192}Ir HDR sources, at about one fourth the effective photon energy. This work presents the calibration of this source in terms of air-kerma strength, based on an adaptation of the current, National Institute of Standards and Technology traceable, in air measurement technique currently used for {sup 192}Ir HDR sources. Several additional measurement correction factors were required, including corrections for air scatter, air attenuation,more » and ion recombination. A new method is introduced for determining the ion chamber calibration coefficient N{sub k}{sup 169}{sup Yb}. An uncertainty analysis was also performed, indicating an overall measurement expanded uncertainty in the air-kerma strength (k=2) of 2.2%.« less