skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

Abstract

Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 weremore » similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less

Authors:
; ;  [1];  [2];  [3]
  1. Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada)
  2. Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)
  3. Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)
Publication Date:
OSTI Identifier:
22642278
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; APPROXIMATIONS; BENCHMARKS; BRACHYTHERAPY; COBALT 60; DEPTH DOSE DISTRIBUTIONS; EPITHELIOMAS; IRIDIUM 192; MONTE CARLO METHOD; PLANNING; RADIATION DOSES; SKIN; SURFACE TREATMENTS; THICKNESS; TUNGSTEN; TUNGSTEN ALLOYS

Citation Formats

Safigholi, H, Soliman, A, Song, W Y, Meigooni, A S, and Han, D. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator. United States: N. p., 2016. Web. doi:10.1118/1.4956163.
Safigholi, H, Soliman, A, Song, W Y, Meigooni, A S, & Han, D. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator. United States. doi:10.1118/1.4956163.
Safigholi, H, Soliman, A, Song, W Y, Meigooni, A S, and Han, D. 2016. "SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator". United States. doi:10.1118/1.4956163.
@article{osti_22642278,
title = {SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator},
author = {Safigholi, H and Soliman, A and Song, W Y and Meigooni, A S and Han, D},
abstractNote = {Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.},
doi = {10.1118/1.4956163},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-airmore » method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with {+-}5% variation for 16 sources. The dose-rate output and stability (within {+-}5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be measured for each case with varying shapes of cutouts. Conclusions: Together with TG-61, the authors' methodology provides comprehensive calibration procedures for medical physicists for using the Xoft eBx system and skin applicators for nonmelanoma skin cancer treatments.« less
  • Purpose: AccuBoost is a noninvasive image-guided technique for the delivery of partial breast irradiation to the tumor bed and currently serves as an alternate to conventional electron beam boost. To irradiate the target volume while providing dose sparing to the skin, the round applicator design was augmented through the addition of an internally truncated conical shield and the reduction of the source to skin distance. Methods: Brachytherapy dose distributions for two types of conical applicators were simulated and estimated using Monte Carlo (MC) methods for radiation transport and a conventional treatment planning system (TPS). MC-derived and TPS-generated dose volume histogramsmore » (DVHs) and dose distribution data were compared for both the conical and round applicators for benchmarking purposes. Results: Agreement using the gamma-index test was {>=}99.95% for distance to agreement and dose accuracy criteria of 2 mm and 2%, respectively. After observing good agreement, TPS DVHs and dose distributions for the conical and round applicators were obtained and compared. Brachytherapy dose distributions generated using Pinnacle{sup 3} for ten CT data sets showed that the parallel-opposed beams of the conical applicators provided similar PTV coverage to the round applicators and reduced the maximum dose to skin, chest wall, and lung by up to 27%, 42%, and 43%, respectively. Conclusions: Brachytherapy dose distributions for the conical applicators have been generated using MC methods and entered into the Pinnacle{sup 3} TPS via the Tufts technique. Treatment planning metrics for the conical AccuBoost applicators were significantly improved in comparison to those for conventional electron beam breast boost.« less
  • Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition ofmore » an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while retaining uniform target dose.« less