skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm

Abstract

Purpose: The effectiveness of using a combination of three sources, {sup 60}Co, {sup 192}Ir and {sup 169}Yb, is analyzed. Different combinations are compared against a single {sup 192}Ir source on prostate cancer cases. A novel inverse planning interior point algorithm is developed in-house to generate the treatment plans. Methods: Thirteen prostate cancer patients are separated into two groups: Group A includes eight patients with the prostate as target volume, while group B consists of four patients with a boost nodule inside the prostate that is assigned 150% of the prescription dose. The mean target volume is 35.7±9.3cc and 30.6±8.5cc for groups A and B, respectively. All patients are treated with each source individually, then with paired sources, and finally with all three sources. To compare the results, boost volume V150 and D90, urethra Dmax and D10, and rectum Dmax and V80 are evaluated. For fair comparison, all plans are normalized to a uniform V100=100. Results: Overall, double- and triple-source plans were better than single-source plans. The triple-source plans resulted in an average decrease of 21.7% and 1.5% in urethra Dmax and D10, respectively, and 8.0% and 0.8% in rectum Dmax and V80, respectively, for group A. For group B, boostmore » volume V150 and D90 increased by 4.7% and 3.0%, respectively, while keeping similar dose delivered to the urethra and rectum. {sup 60}Co and {sup 192}Ir produced better plans than their counterparts in the double-source category, whereas {sup 60}Co produced more favorable results than the remaining individual sources. Conclusion: This study demonstrates the potential advantage of using a combination of two or three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. Our results show that {sup 60}Co, {sup 192}Ir and {sup 169}Yb produce the best plans when used simultaneously and can thus be an alternative to {sup 192}Ir-only in high-dose-rate prostate brachytherapy.« less

Authors:
;  [1]; ; ; ; ;  [2]
  1. University of Toronto, Toronto, Ontario (Canada)
  2. Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)
Publication Date:
OSTI Identifier:
22642265
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BRACHYTHERAPY; COBALT 60; COMPARATIVE EVALUATIONS; DOSE RATES; IRIDIUM 192; NEOPLASMS; PATIENTS; PROSTATE; RADIATION DOSES; RECTUM; URINARY TRACT; YTTERBIUM 169

Citation Formats

Mok Tsze Chung, E, Aleman, D, Safigholi, H, Nicolae, A, Davidson, M, Ravi, A, and Song, W. SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm. United States: N. p., 2016. Web. doi:10.1118/1.4956149.
Mok Tsze Chung, E, Aleman, D, Safigholi, H, Nicolae, A, Davidson, M, Ravi, A, & Song, W. SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm. United States. doi:10.1118/1.4956149.
Mok Tsze Chung, E, Aleman, D, Safigholi, H, Nicolae, A, Davidson, M, Ravi, A, and Song, W. 2016. "SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm". United States. doi:10.1118/1.4956149.
@article{osti_22642265,
title = {SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm},
author = {Mok Tsze Chung, E and Aleman, D and Safigholi, H and Nicolae, A and Davidson, M and Ravi, A and Song, W},
abstractNote = {Purpose: The effectiveness of using a combination of three sources, {sup 60}Co, {sup 192}Ir and {sup 169}Yb, is analyzed. Different combinations are compared against a single {sup 192}Ir source on prostate cancer cases. A novel inverse planning interior point algorithm is developed in-house to generate the treatment plans. Methods: Thirteen prostate cancer patients are separated into two groups: Group A includes eight patients with the prostate as target volume, while group B consists of four patients with a boost nodule inside the prostate that is assigned 150% of the prescription dose. The mean target volume is 35.7±9.3cc and 30.6±8.5cc for groups A and B, respectively. All patients are treated with each source individually, then with paired sources, and finally with all three sources. To compare the results, boost volume V150 and D90, urethra Dmax and D10, and rectum Dmax and V80 are evaluated. For fair comparison, all plans are normalized to a uniform V100=100. Results: Overall, double- and triple-source plans were better than single-source plans. The triple-source plans resulted in an average decrease of 21.7% and 1.5% in urethra Dmax and D10, respectively, and 8.0% and 0.8% in rectum Dmax and V80, respectively, for group A. For group B, boost volume V150 and D90 increased by 4.7% and 3.0%, respectively, while keeping similar dose delivered to the urethra and rectum. {sup 60}Co and {sup 192}Ir produced better plans than their counterparts in the double-source category, whereas {sup 60}Co produced more favorable results than the remaining individual sources. Conclusion: This study demonstrates the potential advantage of using a combination of two or three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. Our results show that {sup 60}Co, {sup 192}Ir and {sup 169}Yb produce the best plans when used simultaneously and can thus be an alternative to {sup 192}Ir-only in high-dose-rate prostate brachytherapy.},
doi = {10.1118/1.4956149},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with themore » source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.« less
  • Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the trainingmore » database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created by brachytherapists can be rapidly generated using ML. The adoption of ML in the brachytherapy workflow is expected to improve LDR treatment plan uniformity while reducing planning time and resources.« less
  • Purpose: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk. Method and Materials: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Platomore » Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V{sub 75%}) for the rectum and bladder, volume receiving at least 125% of the dose (V{sub 125%}) for the urethra, and total volume receiving the reference dose (V{sub 100%}) and volume receiving 150% of the dose (V{sub 150%}) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared. Results: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization. Conclusions: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.« less
  • Purpose: We present clinical outcomes of image-guided brachytherapy using inverse planning simulated annealing (IPSA) planned high-dose rate (HDR) brachytherapy boost for locoregionally advanced cervical cancer. Methods and Materials: From February 2004 through December 2006, 51 patients were treated at the University of California, San Francisco with HDR brachytherapy boost as part of definitive radiation for International Federation of Gynecology and Obstetrics Stage IB1 to Stage IVA cervical cancer. Of the patients, 46 received concurrent chemotherapy, 43 with cisplatin alone and 3 with cisplatin/5-fluorouracil. All patients had IPSA-planned HDR brachytherapy boost after whole-pelvis external radiation to a total tumor dose ofmore » 85 Gy or greater (for alpha/beta = 10). Toxicities are reported according to National Cancer Institute CTCAE v3.0 (Common Terminology Criteria for Adverse Events version 3.0) guidelines. Results: At a median follow-up of 24.3 months, there were no toxicities of Grade 4 or greater and the frequencies of Grade 3 acute and late toxicities were 4% and 2%, respectively. The proportion of patients having Grade 1 or 2 gastrointestinal and genitourinary acute toxicities was 48% and 52%, respectively. Low-grade late toxicities included Grade 1 or 2 vaginal, gastrointestinal, and hormonal toxicities in 31%, 18%, and 4% of patients, respectively. During the follow-up period, local recurrence developed in 2 patients, regional recurrence developed in 2, and new distant metastases developed in 15. The rates of locoregional control of disease and overall survival at 24 months were 91% and 86%, respectively. Conclusions: Definitive radiation by use of inverse planned HDR brachytherapy boost for locoregionally advanced cervical cancer is well tolerated and achieves excellent local control of disease.« less
  • Purpose: To evaluate the advantages of anatomy-based inverse optimization (IO) in planning high-dose-rate (HDR) brachytherapy. Methods and Materials: A total of 114 patients who received HDR brachytherapy (9 Gy in two fractions) combined with hypofractionated external beam radiotherapy (EBRT) were analyzed. The dose distributions of HDR brachytherapy were optimized using geometric optimization (GO) in 70 patients and by anatomy-based IO in the remaining 44 patients. The correlation between the dose-volume histogram parameters, including the urethral dose and the incidence of acute genitourinary (GU) toxicity, was evaluated. Results: The averaged values of the percentage of volume receiving 80-150% of the prescribedmore » minimal peripheral dose (V{sub 8}-V{sub 15}) of the urethra generated by anatomy-based IO were significantly lower than the corresponding values generated by GO. Similarly, the averaged values of the minimal dose received by 5-50% of the target volume (D{sub 5}-D{sub 5}) obtained using anatomy-based IO were significantly lower than those obtained using GO. Regarding acute toxicity, Grade 2 or worse acute GU toxicity developed in 23% of all patients, but was significantly lower in patients for whom anatomy-based IO (16%) was used than in those for whom GO was used (37%), consistent with the reduced urethral dose (p <0.01). Conclusion: The results of this study suggest that anatomy-based IO is superior to GO for dose optimization in HDR brachytherapy for prostate cancer.« less