skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-209: Quantification of Image-Guidance Benefit in Image-Guided Radiotherapy of Cancers

Abstract

Purpose: Image-guidance has been widely used in radiation oncology for accurate radiotherapy. The goal of this study is to quantify the benefit of image-guidance in image-guided radiotherapy (IGRT) of cancers. Methods: In this study, a new index termed image-guidance benefit (IGB), was proposed to quantify the benefit of image-guidance in cancer radiotherapy. It is calculated as a ratio of the square sum of dose differences between planning dose matrix and actual delivery dose matrix post image-guidance to the square sum of dose summation between the two matrixes, summing over all dose scoring voxels. Ranging from 0 to 1, larger IGB values indicate larger benefit out of image-guidance. With IRB approval, the DICOM RT files and 3D couch shifts applied during IGRT of 2219 patients were collected, based on which patient-specific IGB values were calculated with an in-house MATLAB code. Results: In this study, the mean IGB value was found to be 0.0398 (0.000583–0.999) with a positive correlation between IGB value and 3D couch shift vector at 0.0435 per cm (P<0.0001). With 2 mm shift as a threshold above which an image-guidance is deemed clinically necessary, the corresponding mean IGB value was 0.00457, much less than 0.0398 (P<0.001). However, the IGBmore » values of 56 cases based on couch shifts were less than those based on 2 mm shift. Conclusion: The IGB values were patient-specific and site-dependent. Using 2 mm shifts as criterion for applying image-guidance, the applied image-guidance procedures were found clinically necessary and highly beneficial in 97.5% of cancer patients. However, image-guidance procedures were found over-used in about 2.5% of cancer patients in our current practices of IGRT, which should be avoided as they added no benefit in improving delivery accuracy while increasing cancer risk.« less

Authors:
 [1];  [2];  [3]
  1. Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China)
  2. (United States)
  3. Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)
Publication Date:
OSTI Identifier:
22642237
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; CORRELATIONS; IMAGES; NEOPLASMS; PATIENTS; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Zhou, L, Department of Therapeutic Radiology, Yale University, New Haven, CT, and Deng, J. SU-F-J-209: Quantification of Image-Guidance Benefit in Image-Guided Radiotherapy of Cancers. United States: N. p., 2016. Web. doi:10.1118/1.4956117.
Zhou, L, Department of Therapeutic Radiology, Yale University, New Haven, CT, & Deng, J. SU-F-J-209: Quantification of Image-Guidance Benefit in Image-Guided Radiotherapy of Cancers. United States. doi:10.1118/1.4956117.
Zhou, L, Department of Therapeutic Radiology, Yale University, New Haven, CT, and Deng, J. Wed . "SU-F-J-209: Quantification of Image-Guidance Benefit in Image-Guided Radiotherapy of Cancers". United States. doi:10.1118/1.4956117.
@article{osti_22642237,
title = {SU-F-J-209: Quantification of Image-Guidance Benefit in Image-Guided Radiotherapy of Cancers},
author = {Zhou, L and Department of Therapeutic Radiology, Yale University, New Haven, CT and Deng, J},
abstractNote = {Purpose: Image-guidance has been widely used in radiation oncology for accurate radiotherapy. The goal of this study is to quantify the benefit of image-guidance in image-guided radiotherapy (IGRT) of cancers. Methods: In this study, a new index termed image-guidance benefit (IGB), was proposed to quantify the benefit of image-guidance in cancer radiotherapy. It is calculated as a ratio of the square sum of dose differences between planning dose matrix and actual delivery dose matrix post image-guidance to the square sum of dose summation between the two matrixes, summing over all dose scoring voxels. Ranging from 0 to 1, larger IGB values indicate larger benefit out of image-guidance. With IRB approval, the DICOM RT files and 3D couch shifts applied during IGRT of 2219 patients were collected, based on which patient-specific IGB values were calculated with an in-house MATLAB code. Results: In this study, the mean IGB value was found to be 0.0398 (0.000583–0.999) with a positive correlation between IGB value and 3D couch shift vector at 0.0435 per cm (P<0.0001). With 2 mm shift as a threshold above which an image-guidance is deemed clinically necessary, the corresponding mean IGB value was 0.00457, much less than 0.0398 (P<0.001). However, the IGB values of 56 cases based on couch shifts were less than those based on 2 mm shift. Conclusion: The IGB values were patient-specific and site-dependent. Using 2 mm shifts as criterion for applying image-guidance, the applied image-guidance procedures were found clinically necessary and highly beneficial in 97.5% of cancer patients. However, image-guidance procedures were found over-used in about 2.5% of cancer patients in our current practices of IGRT, which should be avoided as they added no benefit in improving delivery accuracy while increasing cancer risk.},
doi = {10.1118/1.4956117},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or moremore » doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship.« less
  • Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law.more » The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate potential for employing dual-function fiducials in the development of GNP-aided radiotherapy.« less
  • Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHDmore » system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was ≤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was ≤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.« less
  • Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less
  • Purpose: Pancreas is a soft-tissue organ, implanted fiducials can change positions due to migration or tissue deformation. This study quantified positional variation of fiducials in IGRT for pancreatic cancer. Methods: 20 patients had at least 3 gold fiducials implanted in pancreas under EUS guidance. Patients had 4D-CT simulation for gated treatment. Daily gated OBI kV images (Turebeam) were used for positional alignment with fiducials for total of 25 or 28 fractions. Relative distances among 3 fiducials (d{sub 1–} {sub 2}, d{sub 1–3}, d{sub 2–3}) were measured from 4D-CT end-of-expiration phase bin; and from gated kV images in first, mid, andmore » last fraction (n=180). Results: The median duration between implant and simulation was 11 (range 0–41) days. The median duration between simulation and first fraction was 17 (range 8–24) days. The median relative distance was 12 (range 4–78) mm for d{sub 1–2}, 24 (range 6–80) mm for d{sub 1–3}, and 19 (range 5–63) mm for d{sub 2–3}. The median deviation was 1 mm for d{sub 1–2}, d{sub 1–3}, d{sub 2–3} between simulation and first fraction, first and mid fraction, mid and last fraction (n=180). Two patients (10%) had deviation >= 5 mm (5, 11 mm) between simulation and first fraction. One patient (5%) had deviation >= 5 mm (11 mm) between first and mid fraction. No patient (0%) had deviation >= 5 mm between mid and last fraction. In all 3 cases with deviation >=5 mm, only one fiducial was significantly deviated. No clear evidence that deviation size was associated with time interval between implant and first fraction. Conclusion: Implanted gold fiducials were quite stable over time in their relative positions in pancreas. Our data suggested at least 3 fiducials are needed. In cases that one fiducial was significantly deviated in daily kV images, this fiducial should be excluded in image guidance.« less