skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-201: Validation Study of Proton Radiography Against CT Data for Quantitative Imaging of Anatomical Changes in Head and Neck Patients

Abstract

Purpose: In clinical pencil-beam-scanned (PBS) proton therapy, the advantage of the characteristic sharp dose fall-off after the Bragg Peak (BP) becomes a disadvantage if the BP positions of a plan’s constituent pencil beams are shifted, eg.due to anatomical changes. Thus, for fractionated PBS proton therapy, accurate knowledge of the water equivalent path length (WEPL) of the traversed anatomy is critical. In this work we investigate the feasibility of using 2D proton range maps (proton radiography, PR) with the active-scanning gantry at PSI. Methods: We simulated our approach using Monte Carlo methods (MC) to simulate proton beam interactions in patients using clinical imaging data. We selected six head and neck cases having significant anatomical changes detected in per-treatment CTs.PRs (two at 0°/90°) were generated from MC simulations of low-dose pencil beams at 230MeV. Each beam’s residual depth-dose was propagated through the patient geometry (from CT) and detected on exiting the patient anatomy in an ideal depth-resolved detector (eg. range telescope). Firstly, to validate the technique, proton radiographs were compared to the ground truth, which was the WEPL from ray-tracing in the patient CT at the pencil beam location. Secondly, WEPL difference maps (per-treatment – planning imaging timepoints) were then generated tomore » locate the anatomical changes, both in the CT (ground truth) and in the PRs. Binomial classification was performed to evaluate the efficacy of the technique relative to CT. Results: Over the projections simulated over all six patients, 70%, 79% and 95% of the grid points agreed with the ground truth proton range to within ±0.5%, ±1%, and ±3% respectively. The sensitivity, specificity, precision and accuracy were high (mean±1σ, 83±8%, 87±13%, 95±10%, 83±7% respectively). Conclusion: We show that proton-based radiographic images can accurately monitor patient positioning and in vivo range verification, while providing equivalent WEPL information to a CT scan, with the advantage of a much lower imaging dose.« less

Authors:
; ;  [1]
  1. Paul Scherrer Institut, Villigen PSI (Switzerland)
Publication Date:
OSTI Identifier:
22634797
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; ANATOMY; BIOMEDICAL RADIOGRAPHY; BRAGG CURVE; COMPUTERIZED TOMOGRAPHY; DEPTH DOSE DISTRIBUTIONS; HEAD; IMAGE PROCESSING; MONTE CARLO METHOD; NECK; PATIENTS; PROTON BEAMS; PROTON RADIOGRAPHY; RADIATION DOSES; RADIOTHERAPY; VALIDATION

Citation Formats

Hammi, A, Weber, D, and Lomax, A. SU-F-J-201: Validation Study of Proton Radiography Against CT Data for Quantitative Imaging of Anatomical Changes in Head and Neck Patients. United States: N. p., 2016. Web. doi:10.1118/1.4956109.
Hammi, A, Weber, D, & Lomax, A. SU-F-J-201: Validation Study of Proton Radiography Against CT Data for Quantitative Imaging of Anatomical Changes in Head and Neck Patients. United States. doi:10.1118/1.4956109.
Hammi, A, Weber, D, and Lomax, A. 2016. "SU-F-J-201: Validation Study of Proton Radiography Against CT Data for Quantitative Imaging of Anatomical Changes in Head and Neck Patients". United States. doi:10.1118/1.4956109.
@article{osti_22634797,
title = {SU-F-J-201: Validation Study of Proton Radiography Against CT Data for Quantitative Imaging of Anatomical Changes in Head and Neck Patients},
author = {Hammi, A and Weber, D and Lomax, A},
abstractNote = {Purpose: In clinical pencil-beam-scanned (PBS) proton therapy, the advantage of the characteristic sharp dose fall-off after the Bragg Peak (BP) becomes a disadvantage if the BP positions of a plan’s constituent pencil beams are shifted, eg.due to anatomical changes. Thus, for fractionated PBS proton therapy, accurate knowledge of the water equivalent path length (WEPL) of the traversed anatomy is critical. In this work we investigate the feasibility of using 2D proton range maps (proton radiography, PR) with the active-scanning gantry at PSI. Methods: We simulated our approach using Monte Carlo methods (MC) to simulate proton beam interactions in patients using clinical imaging data. We selected six head and neck cases having significant anatomical changes detected in per-treatment CTs.PRs (two at 0°/90°) were generated from MC simulations of low-dose pencil beams at 230MeV. Each beam’s residual depth-dose was propagated through the patient geometry (from CT) and detected on exiting the patient anatomy in an ideal depth-resolved detector (eg. range telescope). Firstly, to validate the technique, proton radiographs were compared to the ground truth, which was the WEPL from ray-tracing in the patient CT at the pencil beam location. Secondly, WEPL difference maps (per-treatment – planning imaging timepoints) were then generated to locate the anatomical changes, both in the CT (ground truth) and in the PRs. Binomial classification was performed to evaluate the efficacy of the technique relative to CT. Results: Over the projections simulated over all six patients, 70%, 79% and 95% of the grid points agreed with the ground truth proton range to within ±0.5%, ±1%, and ±3% respectively. The sensitivity, specificity, precision and accuracy were high (mean±1σ, 83±8%, 87±13%, 95±10%, 83±7% respectively). Conclusion: We show that proton-based radiographic images can accurately monitor patient positioning and in vivo range verification, while providing equivalent WEPL information to a CT scan, with the advantage of a much lower imaging dose.},
doi = {10.1118/1.4956109},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less
  • Purpose: To quantify local geometrical uncertainties in anatomical sub-regions during radiotherapy for head-and-neck cancer patients. Methods and Materials: Local setup accuracy was analyzed for 38 patients, who had received intensity-modulated radiotherapy and were regularly scanned during treatment with cone beam computed tomography (CBCT) for offline patient setup correction. In addition to the clinically used large region of interest (ROI), we defined eight ROIs in the planning CT that contained rigid bony structures: the mandible, larynx, jugular notch, occiput bone, vertebrae C1-C3, C3-C5, and C5-C7, and the vertebrae caudal of C7. By local rigid registration to successive CBCT scans, the localmore » setup accuracy of each ROI was determined and compared with the overall setup error assessed with the large ROI. Deformations were distinguished from rigid body movements by expressing movement relative to a reference ROI (vertebrae C1-C3). Results: The offline patient setup correction protocol using the large ROI resulted in residual systematic errors (1 SD) within 1.2 mm and random errors within 1.5 mm for each direction. Local setup errors were larger, ranging from 1.1 to 3.4 mm (systematic) and 1.3 to 2.5 mm (random). Systematic deformations ranged from 0.4 mm near the reference C1-C3 to 3.8 mm for the larynx. Random deformations ranged from 0.5 to 3.6 mm. Conclusion: Head-and-neck cancer patients show considerable local setup variations, exceeding residual global patient setup uncertainty in an offline correction protocol. Current planning target volume margins may be inadequate to account for these uncertainties. We propose registration of multiple ROIs to drive correction protocols and adaptive radiotherapy to reduce the impact of local setup variations.« less
  • Purpose: With the implementation of Cone-beam Computed-Tomography (CBCT) in proton treatment, we introduces a quick and effective tool to verify the patient’s daily setup and geometry changes based on the Water-Equivalent-Thickness Projection-Image(WETPI) from individual beam angle. Methods: A bilateral head neck cancer(HNC) patient previously treated via VMAT was used in this study. The patient received 35 daily CBCT during the whole treatment and there is no significant weight change. The CT numbers of daily CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration(DIR). IMPT plan was generated using 4-field IMPT robust optimization (3.5% rangemore » and 3mm setup uncertainties) with beam angle 60, 135, 300, 225 degree. WETPI within CTV through all beam directions were calculated. 3%/3mm gamma index(GI) were used to provide a quantitative comparison between initial sim-CT and mapped daily CBCT. To simulate an extreme case where human error is involved, a couch bar was manually inserted in front of beam angle 225 degree of one CBCT. WETPI was compared in this scenario. Results: The average of GI passing rate of this patient from different beam angles throughout the treatment course is 91.5 ± 8.6. In the cases with low passing rate, it was found that the difference between shoulder and neck angle as well as the head rest often causes major deviation. This indicates that the most challenge in treating HNC is the setup around neck area. In the extreme case where a couch bar is accidently inserted in the beam line, GI passing rate drops to 52 from 95. Conclusion: WETPI and quantitative gamma analysis give clinicians, therapists and physicists a quick feedback of the patient’s setup accuracy or geometry changes. The tool could effectively avoid some human errors. Furthermore, this tool could be used potentially as an initial signal to trigger plan adaptation.« less
  • Purpose: To develop principal component analysis (PCA) models from daily cone beam CTs (CBCTs) of head and neck (H and N) patients that could be used prospectively in adaptive radiation therapy (ART). Methods: : For 7 H and N patients, Pinnacle Treatment Planning System (Philips Healthcare) was used to retrospectively deformably register daily CBCTs to the planning CT. The number N of CBCTs per treatment course ranged from 14 to 22. For each patient a PCA model was built from the deformation vector fields (DVFs), after first subtracting the mean DVF, producing N eigen-DVFs (EDVFs). It was hypothesized that EDVFsmore » with large eigenvalues represent the major anatomical deformations during the course of treatment, and that it is feasible to relate each EDVF to a clinically meaningful systematic or random change in anatomy, such as weight loss, neck flexion, etc. Results: DVFs contained on the order of 3×87×87×58=1.3 million scalar values (3 times the number of voxels in the registered volume). The top 3 eigenvalues accounted for ∼90% of variance. Anatomical changes corresponding to an EDVF were evaluated by generating a synthetic DVF, and applying that DVF to the CT to produce a synthetic CBCT. For all patients, the EDVF for the largest eigenvalue was interpreted to model weight loss. The EDVF for other eigenvalues appeared to represented quasi-random fraction-to-fraction changes. Conclusion: The leading EDVFs from single-patient PCA models have tentatively been identified with weight loss changes during treatment. Other EDVFs are tentatively identified as quasi-random inter-fraction changes. Clean separation of systematic and random components may require further work. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant anatomical changes, such as weight loss, early in treatment, triggering replanning where beneficial.« less
  • Purpose: To evaluate the anatomical changes and associated dosimetric consequences to the pharyngeal constrictor (PC) that occurs during head and neck radiotherapy (H&N RT). Methods: A cohort of 13 oro-pharyngeal cancer patients, who had daily CBCT’s for localization, was retrospectively studied. On every 5th CBCT, PC was manually delineated by a radiation oncologist. The anterior-posterior PC thickness was measured at the C3 level. Delivered dose to PC was estimated by calculating daily doses on CBCT’s, and accumulating to corresponding planning CT images. For accumulation, a parameter-optimized B- spline-based deformable image registration algorithm (Elastix) was used, in conjunction with an energy-massmore » mapping dose transfer algorithm. Mean and maximum dose (Dmean, Dmax) to PC was determined and compared with corresponding planned quantities. Results: The mean (±standard deviation) volume increase (ΔV) and thickness increase (Δt) over the course of 35 total fractions were 54±33% (11.9±7.6 cc), and 63±39% (2.9±1.9 mm), respectively. The resultant cumulative mean dose increase from planned dose to PC (ΔDmean) was 1.4±1.3% (0.9±0.8 Gy), while the maximum dose increase (ΔDmax) was 0.0±1.6% (0.0±1.1 Gy). Patients with adaptive replanning (n=6) showed a smaller mean dose increase than those without (n=7); 0.5±0.2% (0.3±0.1 Gy) vs. 2.2±1.4% (1.4±0.9 Gy). There was a statistically significant (p<0.0001) strong correlation between ΔDmean and Δt (Pearson coefficient r=0.78), and a moderate-to-strong correlation (r=0.52) between ΔDmean and ΔV. Correlation between ΔDmean and weight loss ΔW (r=0.1), as well as ΔV and ΔW (r=0.2) were negligible. Conclusion: Patients were found to undergo considerable anatomical changes to pharyngeal constrictor during H&N RT, resulting in non-negligible dose deviations from intended dose. Results are indicative that pharyngeal constrictor thickness, measured at C3 level, is a good predictor for the dose change to the organ. Daily deformable registration and dose accumulation provide a reliable means to assess important anatomical and dosimetric changes to pharyngeal constrictor occurring during treatment. This work was supported in part by a research grant from Varian Medical Systems, Palo Alto, CA.« less