skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator

Abstract

Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions in artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and amore » planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any geometric shifts after CT to MRI registration based on anatomical landmarks.« less

Authors:
; ; ; ; ;  [1]
  1. Loyola University Chicago, Maywood, IL (United States)
Publication Date:
OSTI Identifier:
22634764
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; BIOMEDICAL RADIOGRAPHY; BRACHYTHERAPY; COMPUTERIZED TOMOGRAPHY; IN VIVO; NEOPLASMS; NMR IMAGING; PHANTOMS; READOUT SYSTEMS; TITANIUM

Citation Formats

Sullivan, T, Diak, A, Surucu, M, Yacoub, J, Harkenrider, M, and Shea, S. SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator. United States: N. p., 2016. Web. doi:10.1118/1.4956071.
Sullivan, T, Diak, A, Surucu, M, Yacoub, J, Harkenrider, M, & Shea, S. SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator. United States. doi:10.1118/1.4956071.
Sullivan, T, Diak, A, Surucu, M, Yacoub, J, Harkenrider, M, and Shea, S. 2016. "SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator". United States. doi:10.1118/1.4956071.
@article{osti_22634764,
title = {SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator},
author = {Sullivan, T and Diak, A and Surucu, M and Yacoub, J and Harkenrider, M and Shea, S},
abstractNote = {Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions in artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and a planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any geometric shifts after CT to MRI registration based on anatomical landmarks.},
doi = {10.1118/1.4956071},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate the effect of readout bandwidth and voxel size on the appearance of distortion artifacts caused by a titanium brachytherapy applicator. Methods: An acrylic phantom was constructed to rigidly hold a MR conditional, titanium Fletcher-Suit-Delclos-style applicator set (Varian Medical Systems) for imaging on CT (Philips Brilliance) and 1.5T MRI (Siemens Magnetom Aera). Several variants of MRI parameters were tried for 2D T2-weighted turbo spin echo imaging in comparison against the standard clinical protocol with the criteria to keep relative SNR loss less than 20% and imaging time as short as possible. Two 3D sequences were also used formore » comparison with similar parameters. The applicator tandem was segmented on axial CT images (0.4×0.4×1.5mm {sup 3} resolution) and the CT images were registered to the 3D MR images in Eclipse (Varian). The applicator volume was then overlaid on all MRI sets in 3D-Slicer and distances were measured from the tandem tip to the MRI artifact edge in right/left/superior and anterior/posterior/superior directions from coronal and sagittal 2D acquisitions, respectively, or 3D data reformats. Artifact regions were also manually contoured in coronal/sagittal orientations for area measurements. Results: As would be expected, reductions in voxel size and increases in readout bandwidth reduced artifact size (average max artifact length decreased by 0.95 mm and average max area decrease by 0.27 cm{sup 2}). Interestingly, bandwidth increases yielded reductions in area (0.19 cm{sup 2}) and in distance measurements (1 mm) even with voxel increases, as compared to a standard protocol. This could be useful when high performance protocols are not feasible due to long imaging times. Conclusion: We have characterized artifacts caused by cervical brachytherapy applicator across multiple sequence parameters at 1.5T. Future work will focus on finalizing an optimal protocol that balances artifact reduction with imaging time and then testing this new protocol in patients.« less
  • Purpose: Subject-specific susceptibility-induced B0 inhomogeneity affects the geometric accuracy of MRI images, with potential impact on the accuracy of treatment planning and image guidance. This study quantifies individual distortions for patients with intrahepatic tumors. Methods: Liver MRI scans of 13 patients who were enrolled in an IRB approved study were acquired on a 3T scanner (Skyra, Siemens). Clinical contrast-enhanced images were acquired by a 3D Volume Interpolated Breath-Hold Examination (VIBE) sequence with TE/TR =1.65/4.3ms, voxel size = 2.5×2.5×3mm (axial sets) or 3.5×3.5×5mm (coronal sets), and frequency-encoding (FE) bandwidth of 440Hz/pixel. B0 inhomogeneity was evaluated by acquisition of dual gradient echoesmore » (GRE) with TE1/TE2/TR =4.92/7.38/106ms, a voxel size of 3.5×3.5×3.75mm, a FE bandwidth of 290Hz/pixel and breath-hold. The phase difference maps from the two echoes were unwrapped using a quantitative MRI analysis software package (FSL, FMRIB, Oxford, UK). The resulting calculated B0 inhomogeneity maps (ΔB0 in Hz) were converted to voxel distortion maps in the FE direction (ΔX in mm) corresponding to the VIBE images. Results: Maximum susceptibility-induced distortions were observed in the liver dome near the diaphragm. Using results from coronal VIBE images in this study as examples, we observed clusters of voxels displaced close to or greater than ΔX=3.5mm (440 Hz in ΔB0) in the VIBE images of the liver in 3 patients, and greater than 2 mm but less than 3.5 mm in 12 patients. On average, approximately 14% of imaged liver voxels had distortions ΔX>±1mm (ΔB0>±125Hz) and 1% of the voxels had ΔX>±2mm (ΔB0>±250Hz). Conclusion: Although advanced MRI techniques, like VIBE, permit faster acquisitions allowing for breath-held examinations with limited motion-induced artifacts, this study suggests that localized distortions due to subject-specific susceptibility variations can occur and require additional advanced corrections based on measuring patient-specific B0 inhomogeneity maps. The authors would like to acknowledge funding support from NIH R01EB016079 and NIH/NCI RO1 CA132834.« less
  • Purpose: To quantify the magnitude of geometric distortion for MRI scanners and provide recommendations for MRI imaging for radiation therapy Methods: A novel phantom, QUASAR MRID3D [Modus Medical Devices Inc.], was scanned to evaluate the level of 3D geometric distortion present in five MRI scanners used for radiation therapy in our department. The phantom was scanned using the body coil with 1mm image slice thickness to acquire 3D images of the phantom body. The phantom was aligned to its geometric center for each scan, and the field of view was set to visualize the entire phantom. The dependence of distortionmore » magnitude with distance from imaging isocenter and with magnetic field strength (1.5T and 3T) was investigated. Additionally, the characteristics of distortion for Siemens and GE machines were compared. The image distortion for each scanner was quantified in terms of mean, standard deviation (STD), maximum distortion, and skewness. Results: The 3T and 1.5T scans show a similar absolute distortion with a mean of 1.38mm (0.33mm STD) for 3T and 1.39mm (0.34mm STD) for 1.5T for a 100mm radius distance from isocenter. Some machines can have a distortion larger than 10mm at a distance of 200mm from the isocenter. The distortions are presented with plots of the x, y, and z directional components. Conclusion: The results indicate that quantification of MRI image distortion is crucial in radiation oncology for target and organ delineation and treatment planning. The magnitude of geometric distortion determines the margin needed for target contouring which is usually neglected in treatment planning process, especially for SRS/SBRT treatments. Understanding the 3D distribution of the MRI image distortion will improve the accuracy of target delineation and, hence, treatment efficacy. MRI imaging with proper patient alignment to the isocenter is vital to reducing the effects of MRI distortion in treatment planning.« less
  • Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combinedmore » MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.« less
  • Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customizedmore » geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck applications. These Largest-DSVs were attained on different acquisition-orientations and receiver-bandwidths. Conclusion: Geometric distortion was shown to be dependent on sequence-type, acquisition-orientation and receiver-bandwidth. In the experiment, no configuration in any one of these factors could consistently reduce distortion while the others were varying. The distortion analysis result is a valuable guideline for sequence selection and optimization for MR-aided radiotherapy applications.« less