skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy

Abstract

Purpose: To reduce internal target volume (ITV), respiratory management is a must in imaging and treatment for lung, liver, and breast cancers. We investigated the dosimetric accuracy of VMAT treatment delivery with a Response™ gating system linked to linear accelerator. Methods: The Response™ gating module designed to directly control radiation beam by breath-holding with a ABC system (Elekta AB, Stockholm, Sweden) was tested for VMAT treatments. Seven VMAT plans including three conventional and four stereotactic body radiotherapy (SBRT) cases were evaluated. Each plan was composed of two or four arcs of 6MV radiation beam with prescribed dose ranged from 1.8 to 9 Gy per fraction. Each plan was delivered continuously without gating and delivered with multiple interruptions by the ResponseTM gating module with a 20 or 30 second breath-holding period. MapCheck2 and Gafchromic EBT3 films sandwiched in MapPHAN were used to measure the delivered dose with and without gating. Films were scanned on a flatbed color scanner, and red channel was extracted for film dosimetry. Gamma analysis was performed to analyze the dosimetrical accuracy of the radiation delivery with gating. Results: The measured doses with gating remarkably agree with the planned dose distributions in the results of gamma index passingmore » rate (within 20% isodose; >98% for 3%/3mm and >92% for 2%/2mm in MapCheck2, and >91% for 3%/3mm criteria in EBT3 film except one case which was for large target and highly modulated). No significant difference (student t-test: p-value < 0.0005) was shown between the doses delivered with and without gating. There was no indication of radiation gap or overlapping during deliver interruption in film dosimetry. Conclusion: The Response™ gating system can be safely used during VMAT treatment. The accurate performance of the gating system linked to ABC can contribute to ITV reduction for SBRT using VMAT.« less

Authors:
; ; ; ; ;  [1]
  1. Case Western University, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22634726
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; BIOMEDICAL RADIOGRAPHY; EVALUATION; FILM DOSIMETRY; LINEAR ACCELERATORS; LIVER; LUNGS; MAMMARY GLANDS; NEOPLASMS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; RESPIRATION

Citation Formats

Lee, S, Zheng, Y, Albani, D, Colussi, V, Dorth, J, and Sohn, J. SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4956029.
Lee, S, Zheng, Y, Albani, D, Colussi, V, Dorth, J, & Sohn, J. SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy. United States. doi:10.1118/1.4956029.
Lee, S, Zheng, Y, Albani, D, Colussi, V, Dorth, J, and Sohn, J. 2016. "SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy". United States. doi:10.1118/1.4956029.
@article{osti_22634726,
title = {SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy},
author = {Lee, S and Zheng, Y and Albani, D and Colussi, V and Dorth, J and Sohn, J},
abstractNote = {Purpose: To reduce internal target volume (ITV), respiratory management is a must in imaging and treatment for lung, liver, and breast cancers. We investigated the dosimetric accuracy of VMAT treatment delivery with a Response™ gating system linked to linear accelerator. Methods: The Response™ gating module designed to directly control radiation beam by breath-holding with a ABC system (Elekta AB, Stockholm, Sweden) was tested for VMAT treatments. Seven VMAT plans including three conventional and four stereotactic body radiotherapy (SBRT) cases were evaluated. Each plan was composed of two or four arcs of 6MV radiation beam with prescribed dose ranged from 1.8 to 9 Gy per fraction. Each plan was delivered continuously without gating and delivered with multiple interruptions by the ResponseTM gating module with a 20 or 30 second breath-holding period. MapCheck2 and Gafchromic EBT3 films sandwiched in MapPHAN were used to measure the delivered dose with and without gating. Films were scanned on a flatbed color scanner, and red channel was extracted for film dosimetry. Gamma analysis was performed to analyze the dosimetrical accuracy of the radiation delivery with gating. Results: The measured doses with gating remarkably agree with the planned dose distributions in the results of gamma index passing rate (within 20% isodose; >98% for 3%/3mm and >92% for 2%/2mm in MapCheck2, and >91% for 3%/3mm criteria in EBT3 film except one case which was for large target and highly modulated). No significant difference (student t-test: p-value < 0.0005) was shown between the doses delivered with and without gating. There was no indication of radiation gap or overlapping during deliver interruption in film dosimetry. Conclusion: The Response™ gating system can be safely used during VMAT treatment. The accurate performance of the gating system linked to ABC can contribute to ITV reduction for SBRT using VMAT.},
doi = {10.1118/1.4956029},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generatedmore » using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.« less
  • Purpose: SBRT shows excellent tumor control and toxicity rates for patients with locally advanced pancreatic cancer (PCA). Herein, we evaluate the feasibility of using VMAT with ABC for PCA SBRT. Methods: Nine PCA patients previously treated via SBRT utilizing 11-beam step-and-shoot IMRT technique in our center were retrospectively identified, among whom eight patients received 3300cGy in 5 fractions while one received 3000cGy in 5 fractions. A VMAT plan was generated on each patient’s planning CT in Pinnacle v9.8 on Elekta Synergy following the same PCA SBRT clinical protocol. Three partial arcs (182°–300°, 300°-60°, and 60°-180°) with 2°/4° control-point spacing weremore » used. The dosimetric difference between the VMAT and the original IMRT plans was analyzed. IMRT QA was performed for the VMAT plans using MapCheck2 in MapPHAN and the total delivery time was recorded. To mimic the treatment situation with ABC, where patients hold their breath for 20–30 seconds, the delivery was intentionally interrupted every 20–30 seconds. For each plan, the QA was performed with and without beam interruption. Gamma analysis (2%/2mm) was used to compare the planned and measured doses. Results: All VMAT plans with 2mm dose grid passed the clinic protocol with similar PTV coverage and OARs sparing, where PTV V-RxDose was 92.7±2.1% (VMAT) vs. 92.1±2.6% (IMRT), and proximal stomach V15Gy was 3.60±2.69 cc (VMAT) vs. 4.80±3.13 cc (IMRT). The mean total MU and delivery time of the VMAT plans were 2453.8±531.1 MU and 282.1±56.0 seconds. The gamma passing rates of absolute dose were 94.9±3.4% and 94.5±4.0% for delivery without and with interruption respectively, suggesting the dosimetry of VMAT delivery with ABC for SBRT won’t be compromised. Conclusion: This study suggests that PCA SBRT using VMAT with ABC is a feasible technique without compromising plan dosimetry. The combination of VMAT with ABC will potentially reduce the SBRT treatment time.« less
  • To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results inmore » dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.« less
  • Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
  • Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before andmore » 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits.« less