skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

Abstract

Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined tomore » be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.« less

Authors:
; ; ; ; ; ;  [1]
  1. Stony Brook University Hospital, Stony Brook, NY (United States)
Publication Date:
OSTI Identifier:
22634720
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; AORTA; COMPUTERIZED TOMOGRAPHY; ESOPHAGUS; HEART; IMAGE PROCESSING; IMAGES; LUNGS; PLANNING; RADIOTHERAPY; VEINS

Citation Formats

Kim, J, Han, J, Ailawadi, S, Baker, J, Hsia, A, Xu, Z, and Ryu, S. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning. United States: N. p., 2016. Web. doi:10.1118/1.4956021.
Kim, J, Han, J, Ailawadi, S, Baker, J, Hsia, A, Xu, Z, & Ryu, S. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning. United States. doi:10.1118/1.4956021.
Kim, J, Han, J, Ailawadi, S, Baker, J, Hsia, A, Xu, Z, and Ryu, S. 2016. "SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning". United States. doi:10.1118/1.4956021.
@article{osti_22634720,
title = {SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning},
author = {Kim, J and Han, J and Ailawadi, S and Baker, J and Hsia, A and Xu, Z and Ryu, S},
abstractNote = {Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.},
doi = {10.1118/1.4956021},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less
  • Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less
  • Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presentedmore » approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a segmentation approach based on using multiple atlases in combination with label fusion, the proposed hybrid approach provided more accurate results within a clinically acceptable amount of time.« less
  • Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for themore » evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was observed in different segmentation tools applied to different structures. These commercially-available segmentation tools should be carefully evaluated before clinical use.« less
  • Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stagemore » atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.« less