skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT

Abstract

Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planning CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ±more » 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.« less

Authors:
; ; ; ;  [1]
  1. The Cleveland Clinic Foundation, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22634715
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTERIZED TOMOGRAPHY; CORRECTIONS; MAGNETORESISTANCE; NEOPLASMS; PATIENTS; PLANNING; RADIOTHERAPY; SURGERY; VERTEBRAE

Citation Formats

Ghaffar, I, Balik, S, Zhuang, T, Chao, S, and Xia, P. SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT. United States: N. p., 2016. Web. doi:10.1118/1.4956016.
Ghaffar, I, Balik, S, Zhuang, T, Chao, S, & Xia, P. SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT. United States. doi:10.1118/1.4956016.
Ghaffar, I, Balik, S, Zhuang, T, Chao, S, and Xia, P. 2016. "SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT". United States. doi:10.1118/1.4956016.
@article{osti_22634715,
title = {SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT},
author = {Ghaffar, I and Balik, S and Zhuang, T and Chao, S and Xia, P},
abstractNote = {Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planning CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ± 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.},
doi = {10.1118/1.4956016},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To evaluate the dosimetric impact of online cone-beam computed tomography (CBCT) guided correction in lung stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty planning and 162 CBCT images from 20 patients undergoing lung SBRT were analyzed. The precorrection CBCT (CBCT after patient setup, no couch correction) was registered to planning CT using soft tissue; couch shift was applied, with a second CBCT for verification (postcorrection CBCT). Targets and normal structures were delineated on CBCTs: gross tumor volume (GTV), clinical target volume (CTV), cord, esophagus, lung, proximal bronchial tree, and aorta. Dose distributions on all organs manifested on eachmore » CBCT were compared with those planned on the CT. Results: Without CBCT guided target position correction, target dose reduced with respect to treatment plan. Mean and standard deviation of treatment dose discrepancy from the plan were -3.2% (4.9%), -2.1% (4.4%), -6.1% (10.7%), and -3.5% (7%) for GTV D{sub 99%}, GTV D{sub 95%}, CTV D{sub 99%}, and CTV D{sub 95%}, respectively. With CBCT correction, the results were -0.4% (2.6%), 0.1% (1.7%), -0.3% (4.2%), and 0.5% (3%). Mean and standard deviation of the difference in normal organ maximum dose were 2.2% (6.5%) before correction and 2.4% (5.9%) after correction for esophagus; 6.1% (14.1%) and 3.8% (8.1%) for cord; 3.1% (17.5%) and 6.2% (9.8%) for proximal bronchial tree; and 17.7% (19.5%) and 14.1% (17%) for aorta. Conclusion: Online CBCT guidance improves the accuracy of target dose delivery for lung SBRT. However, treatment dose to normal tissue can vary regardless of the correction. Normal tissues should be considered during target registration, according to target proximity.« less
  • Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline andmore » online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving {>=} 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal.« less
  • Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less
  • Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF)more » mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup errors for spine SBRT were similar across three immobilization systems. The BF device resulted in the least amount of intrafraction motion, and based on this device, we justify a 2-mm margin for the planning OAR and target volume.« less
  • Purpose: The optically guided target localization had been developed for linear accelerator based stereotactic radiosurgery (SRS). Unlike the traditional laser localization, the optical guided target localization utilizes a digital system to position patient. Although the system has been proven accurate and robust, it takes away the capability of physicist to directly double check the target position prior to irradiation. Any error from system calibration, data transformation, or head ring position maintenance will not be caught. The purpose of this work is to investigate the possibility of using cone-beam CT (CBCT) to double check the optically guided SRS target localization andmore » reposition the patient. Methods: A SRS quality assurance (QA) phantom was used in the study. The phantom mounted with SRS head frame was scanned by computer tomography (CT) and planned according to the SRS radiation treatment planning process. A target isocenter is defined and transferred to the optically guided target localization system. The phantom was then transported to the linear accelerator room and localized at the initial position agreed by the optically guided target localization system and the CBCT system. Tests were conducted by moving/rotating the phantom to a set of preset offsets and taking CBCT images. Shifts detected by CBCT were compared with the preset offsets. Agreements between them were studied to see how well the CBCT was in discovering the optically guided target localization error. Results: Experiment results demonstrated good agreement between the CBCT detected phantom shift and the preset offset, when the offset is above 1 mm shift or 0.2 degree rotation. Offset less than 1 mm shift or 0.2 degree rotation was not detectable by CBCT. Conclusions: The study concludes that the CBCT is able to discover the optically guided target localization error due to the system calibration or had ring migration. It is a valuable second check tool for SRS target localization quality assurance. The accuracy of CBCT in estimating patient positioning deviation satisfies the SRS procedures with generous tumor size and margin that can tolerate 1 mm or 0.2 degree accuracy. This avoids sending patient home without treatment. CBCT can be neither used as a primary SRS target localization nor can it be used to reposition the patient that cannot tolerate 1 mm shift or 0.2 degree rotation.« less