skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx

Abstract

Purpose: Investigate the feasibility of using weekly MRI to assess dose to organs at risk utilizing deformable image registration. Methods: Sixteen H&N patients with oropharyngeal cancer were imaged on a 3T MR scanner using T2W and mDIXON sequence. Patients were imaged on a weekly basis in treatment position. Parotids (LP & RP), submandibular glands (LS, RS), and oral cavity (OC) were delineated on the weekly MR and reviewed by a board certified radiation oncologist. The original planning CT (pCT), RT-Dose, and RT-Structures were deformed and registered to each weekly MRIs. The deformed CTs and RT-Structures were imported to the treatment planning system (TPS) and rigidly registered to the pCT. Forward dose calculation of the original RT-Plan was used to estimate the delivered dose on the deformed CT. The dose volume histograms (DVH) statistics were performed to compare planned dose, deformed dose, and forward calculated dose. In addition, Dice similarity metric (DSM) was used to compare deformed and reference structures. Results: The average (min,max) DSM between deformed and reference structures was 0.71 (0.69,0.93); 0.70 (0.64,0.89); 0.65 (0.48,0.86); 0.63 (0.37,0.89); and 0.63 (0.58,0.87); for LP, RP, LS, RS, and OC respectively. The respective average relative structures volumes changed at a weekly ratemore » of −4.99%; −4.40%; +3.45%; +1.46%; −1.39%, respectively. The percentage difference %(min,max) between estimated delivered dose and planned dose was +3.94 (−51.3,+30.5); +6.33 (−58.6,+82.7); +2.46 (−38.9,+37.6,); +2.38(−49.0,+28.9); +3.55(−17.0,+43.1). Conclusion: The recalculated dose based on weekly MRI deviated from planned dose for all OARs. Meanwhile, the deformed dose did not reflect the subtle changes in OARs as compared to the recalculated dose. This study demonstrates the feasibility of using weekly MRI to monitor volumetric changes which has important implications on actual delivered dose.« less

Authors:
; ; ; ; ; ;  [1]; ;  [2]
  1. Memorial Sloan Kettering Cancer Center, New York, New York (United States)
  2. Memorial Sloan Kettering West Harrison, West Harrison, NY (United States)
Publication Date:
OSTI Identifier:
22634713
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTERIZED TOMOGRAPHY; GLANDS; HAZARDS; IMAGES; MEDICAL PERSONNEL; NEOPLASMS; NMR IMAGING; ORAL CAVITY; PATIENTS; PLANNING; RADIATION DOSES

Citation Formats

Ludwig, K, Li, J, Venigalla, P, Zhang, J, Tyagi, N, Fontenla, S, Lee, N, Tang, X, and Saleh, Z. SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx. United States: N. p., 2016. Web. doi:10.1118/1.4956012.
Ludwig, K, Li, J, Venigalla, P, Zhang, J, Tyagi, N, Fontenla, S, Lee, N, Tang, X, & Saleh, Z. SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx. United States. doi:10.1118/1.4956012.
Ludwig, K, Li, J, Venigalla, P, Zhang, J, Tyagi, N, Fontenla, S, Lee, N, Tang, X, and Saleh, Z. 2016. "SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx". United States. doi:10.1118/1.4956012.
@article{osti_22634713,
title = {SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx},
author = {Ludwig, K and Li, J and Venigalla, P and Zhang, J and Tyagi, N and Fontenla, S and Lee, N and Tang, X and Saleh, Z},
abstractNote = {Purpose: Investigate the feasibility of using weekly MRI to assess dose to organs at risk utilizing deformable image registration. Methods: Sixteen H&N patients with oropharyngeal cancer were imaged on a 3T MR scanner using T2W and mDIXON sequence. Patients were imaged on a weekly basis in treatment position. Parotids (LP & RP), submandibular glands (LS, RS), and oral cavity (OC) were delineated on the weekly MR and reviewed by a board certified radiation oncologist. The original planning CT (pCT), RT-Dose, and RT-Structures were deformed and registered to each weekly MRIs. The deformed CTs and RT-Structures were imported to the treatment planning system (TPS) and rigidly registered to the pCT. Forward dose calculation of the original RT-Plan was used to estimate the delivered dose on the deformed CT. The dose volume histograms (DVH) statistics were performed to compare planned dose, deformed dose, and forward calculated dose. In addition, Dice similarity metric (DSM) was used to compare deformed and reference structures. Results: The average (min,max) DSM between deformed and reference structures was 0.71 (0.69,0.93); 0.70 (0.64,0.89); 0.65 (0.48,0.86); 0.63 (0.37,0.89); and 0.63 (0.58,0.87); for LP, RP, LS, RS, and OC respectively. The respective average relative structures volumes changed at a weekly rate of −4.99%; −4.40%; +3.45%; +1.46%; −1.39%, respectively. The percentage difference %(min,max) between estimated delivered dose and planned dose was +3.94 (−51.3,+30.5); +6.33 (−58.6,+82.7); +2.46 (−38.9,+37.6,); +2.38(−49.0,+28.9); +3.55(−17.0,+43.1). Conclusion: The recalculated dose based on weekly MRI deviated from planned dose for all OARs. Meanwhile, the deformed dose did not reflect the subtle changes in OARs as compared to the recalculated dose. This study demonstrates the feasibility of using weekly MRI to monitor volumetric changes which has important implications on actual delivered dose.},
doi = {10.1118/1.4956012},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • This study reports clinical performance in the sparing of infrahyoid swallowing organs at risk (SWOARs) in oropharynx cancer intensity-modulated radiation therapy (IMRT) plans. Rates of meeting dose-volume planning goals are reported and compared with geometry-based estimates of what is achievable. This study also develops 3 measures of target-SWOAR geometry and tests their usefulness in providing geometry-based dose-volume planning goals. A total of 50 oropharynx cancer IMRT plans were reviewed. Success rates in meeting institutional dose-volume goals were determined for the glottic larynx (G), postcricoid pharynx (P), and esophagus (E). The following 3 measures of target-SWOAR geometry were investigated as methodsmore » of identifying geometry-based planning goals: presence of gross disease in neck levels 3 to 4, target-SWOAR overlap, and a 3-dimensional (3D) measure of target-SWOAR geometry. Locally advanced disease was predominant in this patient population with target volumes overlapping SWOARs in 68% to 98% of cases. Clinical rates of success in meeting dose-volume goals varied by SWOAR (16% to 82%) but compared well with estimated potentially achievable rates in most cases (14% average difference between clinical and potential). Cases grouped by the presence of levels 3 to 4 neck nodes or target-SWOAR overlap did not have significantly different SWOAR doses. Cases grouped using a 3D measure of target-SWOAR geometry differed significantly, providing useful geometry-based planning goals (e.g., mean Glottis dose <45 Gy was achieved 19%, 44%, or 81% of the time in each of 3 groups). This study describes the technical challenge of sparing SWOARs and investigates several potential methods for grouping cases to assist with treatment plan evaluation. Quantifying the 3-D relationship between the targets and SWOARs is a promising way of approaching this complex problem. Data presented in this paper may be useful to evaluate treatment plans using objective geometry-based goals.« less
  • Purpose: To compare the dose distribution between customized planning (CP) and adopting a single plan (SP) in multifractionated high-dose-rate brachytherapy and to establish predictors for the necessity of CP in a given patient. Methods and Materials: A total of 50 computed tomography-based plans for 10 patients were evaluated. Each patient had received 6 Gy for five fractions. The clinical target volume and organs at risk (i.e., rectum, bladder, sigmoid, and small bowel) were delineated on each computed tomography scan. For the SP approach, the same dwell position and time was used for all fractions. For the CP approach, the dwellmore » position and time were reoptimized for each fraction. Applicator position variation was determined by measuring the distance between the posterior bladder wall and the tandem at the level of the vaginal fornices. Results: The organs at risk D{sub 2cc} (dose to 2 cc volume) was increased with the SP approach. The dose variation was statistically similar between the tandem and ring and tandem and ovoid groups. The bladder D{sub 2cc} dose was 81.95-105.42 Gy{sub 2} for CP and 82.11-122.49 Gy{sub 2} for SP. In 5 of the 10 patients, the bladder would have been significantly overdosed with the SP approach. The variation of the posterior bladder wall distance from that in the first fraction was correlated with the increase in the bladder D{sub 2cc} (SP/CP), with a correlation coefficient of -0.59. Conclusion: Our results support the use of CP instead of the SP approach to help avoid a significant overdose to the bladder. This is especially true for a decrease in the posterior wall distance of {>=}0.5 cm compared with that in the first fraction.« less
  • Purpose: To quantify the anatomic changes caused by external beam radiotherapy in head-and-neck cancer patients in full three dimensions and to relate the local anatomic changes to the planned mean dose. Methods and Materials: A nonrigid registration method was adapted for RT image registration. The method was applied in 10 head-and-neck cancer patients, who each underwent a planning and a repeat computed tomography scan. Contoured structures (parotid, submandibular glands, and tumor) were registered in a nonrigid manner. The accuracy of the transformation was determined. The transformation results were used to summarize the anatomic changes on a local scale for themore » irradiated and spared glands. The volume reduction of the glands was related to the planned mean dose. Results: Transformation was accurate with a mean error of 0.6 {+-} 0.5 mm. The volume of all glands and the primary tumor decreased. The lateral regions of the irradiated parotid glands moved inward (average, 3 mm), and the medial regions tended to remain in the same position. The irradiated submandibular glands shrank and moved upward. The spared glands showed only a small deformation ({approx}1 mm in most regions). Overall, the primary tumors shrank. The volume loss of the parotid glands correlated significantly with the planned mean dose (p <0.001). Conclusion: General shrinkage and deformation of irradiated glands was seen. The spared glands showed few changes. These changes were assessed by a nonrigid registration method, which effectively described the local changes occurring in the head-and-neck region after external beam radiotherapy.« less
  • Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). Themore » mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.« less
  • Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less