skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck

Abstract

Purpose: To utilize deformable dose accumulation (DDA) to determine how cold spots within the PTV change over the course of fractionated head and neck (H&N) radiotherapy. Methods: Voxel-based dose was tracked using a DDA platform. The DDA process consisted of B-spline-based deformable image registration (DIR) and dose accumulation between planning CT’s and daily cone-beam CT’s for 10 H&N cancer patients. Cold spots within the PTV (regions receiving less than the prescription, 70 Gy) were contoured on the cumulative dose distribution. These cold spots were mapped to each fraction, starting from the first fraction to determine how they changed. Spatial correlation between cold spot regions over each fraction, relative to the last fraction, was computed using the Jaccard index Jk (Mk,N), where N is the cold spot within the PTV at the end of the treatment, and Mk the same region for fraction k. Results: Figure 1 shows good spatial correlation between cold spots, and highlights expansion of the cold spot region over the course of treatment, as a result of setup uncertainties, and anatomical changes. Figure 2 shows a plot of Jk versus fraction number k averaged over 10 patients. This confirms the good spatial correlation between cold spots overmore » the course of treatment. On average, Jk reaches ∼90% at fraction 22, suggesting that possible intervention (e.g. reoptimization) may mitigate the cold spot region. The cold spot, D99, averaged over 10 patients corresponded to a dose of ∼65 Gy, relative to the prescription dose of 70 Gy. Conclusion: DDA-based tracking provides spatial dose information, which can be used to monitor dose in different regions of the treatment plan, thereby enabling appropriate mid-treatment interventions. This work is supported in part by Varian Medical Systems, Palo Alto, CA.« less

Authors:
; ; ; ; ; ;  [1]
  1. Henry Ford Health System, Detroit, MI (United States)
Publication Date:
OSTI Identifier:
22632198
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BEAMS; COMPUTERIZED TOMOGRAPHY; CORRELATIONS; HEAD; IMAGES; NECK; NEOPLASMS; PARTICLE TRACKS; PATIENTS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Liu, C, Chetty, I, Mao, W, Kumarasiri, A, Zhong, H, Brown, S, and Siddiqui, F. SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck. United States: N. p., 2016. Web. doi:10.1118/1.4955976.
Liu, C, Chetty, I, Mao, W, Kumarasiri, A, Zhong, H, Brown, S, & Siddiqui, F. SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck. United States. doi:10.1118/1.4955976.
Liu, C, Chetty, I, Mao, W, Kumarasiri, A, Zhong, H, Brown, S, and Siddiqui, F. Wed . "SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck". United States. doi:10.1118/1.4955976.
@article{osti_22632198,
title = {SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck},
author = {Liu, C and Chetty, I and Mao, W and Kumarasiri, A and Zhong, H and Brown, S and Siddiqui, F},
abstractNote = {Purpose: To utilize deformable dose accumulation (DDA) to determine how cold spots within the PTV change over the course of fractionated head and neck (H&N) radiotherapy. Methods: Voxel-based dose was tracked using a DDA platform. The DDA process consisted of B-spline-based deformable image registration (DIR) and dose accumulation between planning CT’s and daily cone-beam CT’s for 10 H&N cancer patients. Cold spots within the PTV (regions receiving less than the prescription, 70 Gy) were contoured on the cumulative dose distribution. These cold spots were mapped to each fraction, starting from the first fraction to determine how they changed. Spatial correlation between cold spot regions over each fraction, relative to the last fraction, was computed using the Jaccard index Jk (Mk,N), where N is the cold spot within the PTV at the end of the treatment, and Mk the same region for fraction k. Results: Figure 1 shows good spatial correlation between cold spots, and highlights expansion of the cold spot region over the course of treatment, as a result of setup uncertainties, and anatomical changes. Figure 2 shows a plot of Jk versus fraction number k averaged over 10 patients. This confirms the good spatial correlation between cold spots over the course of treatment. On average, Jk reaches ∼90% at fraction 22, suggesting that possible intervention (e.g. reoptimization) may mitigate the cold spot region. The cold spot, D99, averaged over 10 patients corresponded to a dose of ∼65 Gy, relative to the prescription dose of 70 Gy. Conclusion: DDA-based tracking provides spatial dose information, which can be used to monitor dose in different regions of the treatment plan, thereby enabling appropriate mid-treatment interventions. This work is supported in part by Varian Medical Systems, Palo Alto, CA.},
doi = {10.1118/1.4955976},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose formore » H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.« less
  • Purpose: To evaluate the anatomical changes and associated dosimetric consequences to the pharyngeal constrictor (PC) that occurs during head and neck radiotherapy (H&N RT). Methods: A cohort of 13 oro-pharyngeal cancer patients, who had daily CBCT’s for localization, was retrospectively studied. On every 5th CBCT, PC was manually delineated by a radiation oncologist. The anterior-posterior PC thickness was measured at the C3 level. Delivered dose to PC was estimated by calculating daily doses on CBCT’s, and accumulating to corresponding planning CT images. For accumulation, a parameter-optimized B- spline-based deformable image registration algorithm (Elastix) was used, in conjunction with an energy-massmore » mapping dose transfer algorithm. Mean and maximum dose (Dmean, Dmax) to PC was determined and compared with corresponding planned quantities. Results: The mean (±standard deviation) volume increase (ΔV) and thickness increase (Δt) over the course of 35 total fractions were 54±33% (11.9±7.6 cc), and 63±39% (2.9±1.9 mm), respectively. The resultant cumulative mean dose increase from planned dose to PC (ΔDmean) was 1.4±1.3% (0.9±0.8 Gy), while the maximum dose increase (ΔDmax) was 0.0±1.6% (0.0±1.1 Gy). Patients with adaptive replanning (n=6) showed a smaller mean dose increase than those without (n=7); 0.5±0.2% (0.3±0.1 Gy) vs. 2.2±1.4% (1.4±0.9 Gy). There was a statistically significant (p<0.0001) strong correlation between ΔDmean and Δt (Pearson coefficient r=0.78), and a moderate-to-strong correlation (r=0.52) between ΔDmean and ΔV. Correlation between ΔDmean and weight loss ΔW (r=0.1), as well as ΔV and ΔW (r=0.2) were negligible. Conclusion: Patients were found to undergo considerable anatomical changes to pharyngeal constrictor during H&N RT, resulting in non-negligible dose deviations from intended dose. Results are indicative that pharyngeal constrictor thickness, measured at C3 level, is a good predictor for the dose change to the organ. Daily deformable registration and dose accumulation provide a reliable means to assess important anatomical and dosimetric changes to pharyngeal constrictor occurring during treatment. This work was supported in part by a research grant from Varian Medical Systems, Palo Alto, CA.« less
  • Purpose: To estimate the accumulated dose to targets and organs at risk (OAR) for head and neck (H'N) radiotherapy using 3 deformable image registration (DIR) algorithms. Methods: Five H'N patients, who had daily CBCTs taken during the course of treatment, were retrospectively studied. All plans had 5 mm CTV-to-PTV expansions. To overcome the small field of view (FOV) limitations and HU uncertainties of CBCTs, CT images were deformably registered using a parameter-optimized B-spline DIR algorithm (Elastix, elastix.isi.uu.nl) and resampled onto each CBCT with a 4 cm uniform FOV expansion. The dose of the day was calculated on these resampled CTmore » images. Calculated daily dose matrices were warped and accumulated to the planning CT using 3 DIR algorithms; SmartAdapt (Eclipse/Varian), Velocity (Velocity Medical Solutions), and Elastix. Dosimetric indices for targets and OARs were determined from the DVHs and compared with corresponding planned quantities. Results: The cumulative dose deviation was less than 2%, on average, for PTVs from the corresponding plan dose, for all algorithms/patients. However, the parotids show as much as a 37% deviation from the intended dose, possibly due to significant patient weight loss during the first 3 weeks of treatment (15.3 lbs in this case). The mean(±SD) cumulative dose deviations of the 5 patients estimated using the 3 algorithms (SmartAdapt, Velocity, and Elastix) were (0.8±0.9%, 0.5±0.9%, 0.6±1.3%) for PTVs, (1.6±1.9%, 1.4±2.0%, 1.7±1.9%) for GTVs, (10.4±12.1%, 10.7±10.6%, 6.5±10.1%) for parotid glands, and (4.5±4.6%, 3.4±5.7%, 3.9±5.7%) for mucosa, respectively. The differences among the three DIR algorithms in the estimated cumulative mean doses (1SD (in Gy)) were: 0.1 for PTVs, 0.1 for GTVs, 1.9 for parotid glands, and 0.4 for mucosa. Conclusion: Results of this study are suggestive that more frequent plan adaptation for organs, such as the parotid glands, might be beneficial during the course of H'N RT. This study was supported in part by a research grant from Varian Medical Systems, Palo Alto, CA.« less
  • Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated dosesmore » of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of registration accuracy is essential besides the visual assessment by the treating physician. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11105225)« less
  • Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical implementation of this technology may enable timely plan adaption and potentially lead to improved outcome.« less