skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-13: Choosing An IMRT Technique in the Treatment of Head and Neck Cancer with Daily Localization Uncertainties

Abstract

Purpose: Head and Neck cancer treatment with IMRT/VMAT has two choices: split-filed IMRT(SFI), in which the LAN is treated with a separate anterior field and the extended whole-field IMRT(WFI) in which LAN is included with the IMRT/VMAT field. This study shows that under the same dose limit criteria, choosing the technique becomes a critical issue if daily localization and immobilization altered the dose distribution. Methods: Nine common head-and-neck cancer cases were chosen to illustrate how the daily localization and immobilization uncertainties affect to choose between SFI and WFI. Both SFI and WFI at upper target coverage were generated with VMAT. For each case, the same planning criteria were applied to the target and critical structures; therefore, similar target coverage and dose falloff can be observed in both techniques. Thirty days of kV cone beam CT(CBCT) images on each case were also delineated with contralateral and ipsilateral target as well as larynx as critical structure. About 300 CBCT images with daily delivered doses were analyzed and compared in a form of dose-volume histograms. Results: While both plans for SFI and WFI with VMAT planning utilized and meet the criteria of D95>prescription dose and for not-involved larynx with mean dose <35Gy andmore » V55<10%, the daily localization and immobilization has a great contribution to the resulted dose delivery. With WFI, the better daily contralateral and ipsilateral neck target coverage can reflect a simpler or shorter localization; however, a much superior avoidance (WFI: mean dose a 42.5Gy; SFI: mean dose a 18.9Gy) of the non-involved larynx from the SFI is preferred. Conclusion: Dosimetrically, SFI and WFI are equally well for head and Neck cancer treatment with VMAT technique; however, if considering the contribution of daily localization(CBCT) method uncertainties, SFI is better with sparing non-involved larynx and WFI has better target coverage.« less

Authors:
; ; ;  [1]
  1. Fox Chase Cancer Center, Philadelphia, PA (United States)
Publication Date:
OSTI Identifier:
22632149
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; AVOIDANCE; COMPUTERIZED TOMOGRAPHY; DOSE LIMITS; HEAD; LARYNX; NECK; NEOPLASMS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Lin, T, Wang, L, Galloway, T, and Ma, C. SU-F-J-13: Choosing An IMRT Technique in the Treatment of Head and Neck Cancer with Daily Localization Uncertainties. United States: N. p., 2016. Web. doi:10.1118/1.4955921.
Lin, T, Wang, L, Galloway, T, & Ma, C. SU-F-J-13: Choosing An IMRT Technique in the Treatment of Head and Neck Cancer with Daily Localization Uncertainties. United States. doi:10.1118/1.4955921.
Lin, T, Wang, L, Galloway, T, and Ma, C. 2016. "SU-F-J-13: Choosing An IMRT Technique in the Treatment of Head and Neck Cancer with Daily Localization Uncertainties". United States. doi:10.1118/1.4955921.
@article{osti_22632149,
title = {SU-F-J-13: Choosing An IMRT Technique in the Treatment of Head and Neck Cancer with Daily Localization Uncertainties},
author = {Lin, T and Wang, L and Galloway, T and Ma, C},
abstractNote = {Purpose: Head and Neck cancer treatment with IMRT/VMAT has two choices: split-filed IMRT(SFI), in which the LAN is treated with a separate anterior field and the extended whole-field IMRT(WFI) in which LAN is included with the IMRT/VMAT field. This study shows that under the same dose limit criteria, choosing the technique becomes a critical issue if daily localization and immobilization altered the dose distribution. Methods: Nine common head-and-neck cancer cases were chosen to illustrate how the daily localization and immobilization uncertainties affect to choose between SFI and WFI. Both SFI and WFI at upper target coverage were generated with VMAT. For each case, the same planning criteria were applied to the target and critical structures; therefore, similar target coverage and dose falloff can be observed in both techniques. Thirty days of kV cone beam CT(CBCT) images on each case were also delineated with contralateral and ipsilateral target as well as larynx as critical structure. About 300 CBCT images with daily delivered doses were analyzed and compared in a form of dose-volume histograms. Results: While both plans for SFI and WFI with VMAT planning utilized and meet the criteria of D95>prescription dose and for not-involved larynx with mean dose <35Gy and V55<10%, the daily localization and immobilization has a great contribution to the resulted dose delivery. With WFI, the better daily contralateral and ipsilateral neck target coverage can reflect a simpler or shorter localization; however, a much superior avoidance (WFI: mean dose a 42.5Gy; SFI: mean dose a 18.9Gy) of the non-involved larynx from the SFI is preferred. Conclusion: Dosimetrically, SFI and WFI are equally well for head and Neck cancer treatment with VMAT technique; however, if considering the contribution of daily localization(CBCT) method uncertainties, SFI is better with sparing non-involved larynx and WFI has better target coverage.},
doi = {10.1118/1.4955921},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: With the emerging use of intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck cancer, selection of technique becomes a critical issue. The purpose of this article is to establish IMRT guidelines for head-and-neck cancer at a given institution. Methods and Materials: Six common head-and-neck cancer cases were chosen to illustrate the points that must be considered when choosing between split-field (SF) IMRT, in which the low anterior neck (LAN) is treated with an anterior field, and the extended whole-field (EWF) IMRT in which the LAN is included with the IMRT fields. For each case, the gross tumor, clinicalmore » target, and planning target volumes and the surrounding critical normal tissues were delineated. Subsequently, the SF and EWF IMRT plans were compared using dosimetric parameters from dose-volume histograms. Results: Target coverage and doses delivered to the critical normal structures were similar between the two different techniques. Cancer involving the nasopharynx and oropharynx are best treated with the SF IMRT technique to minimize the glottic larynx dose. The EWF IMRT technique is preferred in situations in which the glottic larynx is considered as a target, i.e., cancer of the larynx, hypopharynx, and unknown head-and-neck primary. When the gross disease extends inferiorly and close to the glottic larynx, EWF IMRT technique is also preferred. Conclusion: Depending on the clinical scenario, different IMRT techniques and guidelines are suggested to determine a preferred IMRT technique. We found that having this treatment guideline when treating these tumors ensures a smoother flow for the busy clinic.« less
  • Purpose: To determine differences in clinical outcomes using intensity-modulated radiotherapy (IMRT) or a standard low neck field (LNF) to treat low neck. Methods and Materials: This is a retrospective, single-institution study. Ninety-one patients with squamous cell carcinoma of the head and neck were treated with curative intent. According to physician preference, some patients were treated with LNF (Planning Target Volume 3) field using a single anterior photon field matched to the IMRT field. Field junctions were not feathered. The endpoints were time to failure and use of a percutaneous endoscopic gastrostomy (PEG) tube (as a surrogate of laryngeal edema causingmore » aspiration), and analysis was done with {chi}{sup 2} and log-rank tests. Results: Median follow-up was 21 months (range, 2-89 months). Median age was 60 years. Thirty-seven patients (41%) were treated with LNF, 84% were Stage III or IV. A PEG tube was required in 30%, as opposed to 33% without the use of LNF. Node 2 or 3 neck disease was treated more commonly without LNF (38% vs. 24%, p = 0.009). Failures occurred in 12 patients (13%). Only 1 patient treated with LNF failed regionally, 4.5 cm above the match line. The 3-year disease-free survival rate was 87% and 79% with LNF and without LNF, respectively (p = 0.2), and the 3-year LR failure rate was 4% and 21%, respectively (p = 0.04). Conclusions: Using LNF to treat the low neck did not increase the risk of regional failure 'in early T and early N diseases' or decrease PEG tube requirements.« less
  • From 1978 to the end of 1980, 179 patients with advanced head and neck tumors were accrued in a multicenter pilot study of the EORTC Radiotherapy Group, investigating the feasibility of high dose multiple daily fractionation (MDF) and its combination with misonidazole. The irradiation scheme consisted of three daily fractions of 1.6 Gy (four hour intervals) to a total dose of 48 Gy in two weeks, followed 3 to 4 weeks later by a boost to a total of about 70 Gy in 6 to 7 weeks. Misonidazole was given in daily doses of 1 g/m/sup 2/ (total 13 ormore » 14 g/m/sup 2/) to 53 patients, thus sensitizing every radiation session. All patients had large head and neck tumors, with a poor prognosis. Acute reactions were well tolerated. Skin reactions were very moderate: mucosal reaction started at day 10 to 12. Tumor regression was very impressive, so that palliation was obtained quickly. Nine patients died from treatment related causes. It is difficult to assess local control at this time, but at the time of analysis (August 1981), the actuarial control rate was 48% at 20 months, with misonidazole 57%. This difference, however, is not statistically significant. Survival of the total group is 31% at 20 months. In these patients with a heavy tumor burden the early results were considered a success by all participants. For patients with sufficient follow-up, late reactions can be evaluated. Some edema and fibrosis is seen, but did not exceed a degree which could be expected with single daily fractionation to the same dose. This study demonstrates the possibility of giving highly concentrated treatments to total doses equal to those used in conventional fractionation.« less
  • Purpose: The conventional single-isocenter and half-beam (SIHB) technique for matching supraclavicular fields with head-and-neck (HN) intensity-modulated radiotherapy (IMRT) fields is subject to substantial dose inhomogeneities from imperfect accelerator jaw/MLC calibration. It also limits the isocenter location and restricts the useful field size for IMRT. We propose a dynamic field-matching technique to overcome these limitations. Methods and materials: The proposed dynamic field-matching technique makes use of wedge junctions for the abutment of supraclavicular and HN IMRT fields. The supraclavicular field was shaped with a multileaf collimator (MLC), which was orientated such that the leaves traveled along the superoinferior direction. The leavesmore » that defined the superior field border moved continuously during treatment from 1.5 cm below to 1.5 cm above the conventional match line to generate a 3-cm-wide wedge-shaped junction. The HN IMRT fields were optimized by taking into account the dose contribution from the supraclavicular field to the junction area, which generates a complementary wedge to produce a smooth junction in the abutment region. This technique was evaluated on a polystyrene phantom and 10 HN cancer patients. Treatment plans were generated for the phantom and the 10 patients. Dose profiles across the abutment region were measured in the phantom on films. For patient plans, dose profiles that passed through the center of the neck lymph nodes were calculated using the proposed technique and the SIHB technique, and dose uniformity in the abutment region was compared. Field mismatches of {+-} 1 mm and {+-} 2 mm because of imperfect jaw/MLC calibration were simulated, and the resulting dose inhomogeneities were studied for the two techniques with film measurements and patient plans. Three-dimensional volumetric doses were analyzed, and equivalent uniform doses (EUD) were computed. The effect of field mismatches on EUD was compared for the two match techniques. Results: For a perfect jaw/MLC calibration, dose profiles for the 10 patients in the 3-cm match zone had an average inhomogeneity range of -1.6% to +1.6% using the dynamic-matching technique and -3.7% to +3.8% according to the SIHB technique. Measurements showed that dose inhomogeneities that resulted from 1-mm and 2-mm jaw/MLC calibration errors were reduced from as large as 27% and 45% with the SIHB technique to less than 2% and 5.7% with the dynamic technique, respectively. For -1-mm, -2-mm, +1-mm, and +2-mm jaw/MLC calibration errors, respectively, treatment plans for the 10 patients yielded average dose inhomogeneities of -5.9%, -3.0%, +2.7%, and +5.8% with the dynamic technique as compared to -22.8%, -11.1%, +9.8%, and +22.1% with the SIHB technique. Calculation based on a dose-volume histogram (DVH) showed that the SIHB technique resulted in larger changes in EUD of the PTV in the junction area than did the dynamic technique. Conclusion: Compared with the conventional SIHB technique, the dynamic field-matching technique provides superior dose homogeneity in the abutment region between the supraclavicular and HN IMRT fields. The dynamic feathering mechanism substantially reduces dose inhomogeneities that result from imperfect jaw/MLC calibration. In addition, isocenter location in the dynamic field-matching technique can be chosen for reproducible patient setup and for adequate IMRT field size rather than being dictated by the match position. It also allows angling of the supraclavicular field to reduce the volume of healthy lung irradiated, which is impractical with the SIHB technique. In principle, this technique should be applicable to any treatment site that requires the abutment of static and intensity-modulated fields.« less
  • Radiation treatment with intensity-modulated radiation therapy (IMRT) for head-and-neck cancer usually involves treating the superior aspects of the target volume with intensity-modulated (IM) fields, and the inferior portion of the target volume (the low neck nodes) with a static anterior-posterior field (commonly known as the low anterior neck, or LAN field). A match line between the IM and the LAN fields is created with possibly large dose inhomogeneities, which are clinically undesirable. We propose a practical method to properly match these fields with minimal dependence on patient setup errors. The method requires mono-isocentric setup of the IM and LAN fieldsmore » with half-beam blocks as defined by the asymmetric jaws. The inferior jaws of the IM fields, which extend {approx}1 cm inferiorly past the isocenter, are changed manually before patient treatment, so that they match the superior jaw of the LAN field at the isocenter. The matching of these fields therefore does not depend on the particular treatment plan of IMRT and depends only on the matching of the asymmetric jaws. Measurements in solid water phantom were performed to verify the field-matching technique. Dose inhomogeneities of less than 5% were obtained in the match-line region. Feathering of the match line is done twice during the course of a treatment by changing the matching jaw positions superiorly at 3-mm increments each time, which further reduces the dose inhomogeneity. Compared to the method of including the lower neck nodes in the IMRT fields, the field-matching technique increases the delivery efficiency and significantly reduces the total treatment time.« less