skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures

Abstract

Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system. Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of externalmore » disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less

Authors:
 [1]
  1. University Hospitals Case Medical Center, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22632146
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; ALLOYS; ANIMAL TISSUES; BIOPSY; BRACHYTHERAPY; MODE CONTROL; PHANTOMS; SHAPE MEMORY EFFECT; THERMAL SHOCK

Citation Formats

Podder, T. SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures. United States: N. p., 2016. Web. doi:10.1118/1.4955918.
Podder, T. SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures. United States. doi:10.1118/1.4955918.
Podder, T. 2016. "SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures". United States. doi:10.1118/1.4955918.
@article{osti_22632146,
title = {SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures},
author = {Podder, T},
abstractNote = {Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system. Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.},
doi = {10.1118/1.4955918},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • This paper presents an active power filter for three-phase systems. The work is motivated by the need for active filtration in a current-source excitation system for a variable-reluctance generator. The active filter is comprised of a six-switch three-phase inverter, a dc bus capacitor, and an isolation transformer. The isolation transformer is required by the application. The leakage inductance associated with each phase of the isolation transformer is used as the series impedance with each phase, by which the inverter is able to actively shape the phase currents in order to compensate for the nonlinearities of all loads within the pointmore » of common coupling. The active filter is controlled through two control loops. The inner current regulation loop uses sliding-mode control by virtue of its ease of implementation. The outer voltage loop regulates the average voltage on the dc bus capacitor. The outer voltage loop is responsible for correctly setting the commanded magnitude of the phase currents. This paper presents the analysis, design, and operation of the active filter. Experimental results are provided for the active filter compensating a phase-controlled rectifier which is drawing 10.4 kW.« less
  • Purpose: Syringes are used for diagnostic fluid aspiration and fine-needle aspiration biopsy in interventional procedures. We determined the benefits, disadvantages, and patient safety implications of syringe and needle size on vacuum generation, hand force requirements, biopsy/fluid yield, and needle control during aspiration procedures. Materials and Methods: Different sizes (1, 3, 5, 10, and 20 ml) of the conventional syringe and aspirating mechanical safety syringe, the reciprocating procedure device, were studied. Twenty operators performed aspiration procedures with the following outcomes measured: (1) vacuum (torr), (2) time to vacuum (s), (3) hand force to generate vacuum (torr-cm{sup 2}), (4) operator difficulty duringmore » aspiration, (5) biopsy yield (mg), and (6) operator control of the needle tip position (mm). Results: Vacuum increased tissue biopsy yield at all needle diameters (P < 0.002). Twenty-milliliter syringes achieved a vacuum of -517 torr but required far more strength to aspirate, and resulted in significant loss of needle control (P < 0.002). The 10-ml syringe generated only 15% less vacuum (-435 torr) than the 20-ml device and required much less hand strength. The mechanical syringe generated identical vacuum at all syringe sizes with less hand force (P < 0.002) and provided significantly enhanced needle control (P < 0.002). Conclusions: To optimize patient safety and control of the needle, and to maximize fluid and tissue yield during aspiration procedures, a two-handed technique and the smallest syringe size adequate for the procedure should be used. If precise needle control or one-handed operation is required, a mechanical safety syringe should be considered.« less
  • This paper presents a discrete sliding-mode control scheme with feedforward compensation for the closed-loop regulation of the pulse-width modulated (PWM) inverter used in an uninterruptible power supply (UPS). The proposed feedforward controller can effectively improve the tracking performance of the PWM inverter. In designing the sliding-mode controller, the authors have taken load disturbance into consideration to enhance the robustness of the PWM inverter. Moreover, the upper bound of the load disturbance under which the sliding condition can be maintained has also been derived. The sliding curve of the sliding-mode controller is designed such that the behavior of the controlled PWMmore » inverter is optimal subject to the selected cost function. Due to the coordinate transformation proposed in this paper, only the output voltage needs to be measured as feedback for the purpose of closed-loop regulation. Simulation and experimental results are given to show the effectiveness of the proposed control scheme.« less
  • A novel control technique has been devised to obtain high dynamics responses from a multilevel power conditioning converter. The theory of Variable Structure Control System with sliding mode has been followed, taking into account the several problems that may be encountered in space environments. The analytical study made provides general tools to design ac power conditioning systems destined to any applications. The new control scheme, its mathematical analysis and digital simulation results relevant to a 115 V/400 Hz ac power system are presented and discussed.
  • The Space Station Furnace Facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The Thermal Control System (TCS) is defined as one of the core systems and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The paper formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operatemore » in the local sliding modes, resulting in control system invariance to interaction disturbances. The desired de-coupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities and variations of the pump pressure supplied to the controlled subsystems. {copyright} {ital 1996 American Institute of Physics.}« less